

図 7.28 波照間島周辺衛星画像 (p47n017)

7.2 水路測量データ

使用した水路測量データー覧を表 7.3 に示す。また、各衛星画像に対応する水路測量デ ータを図 7.29~7.51 に示す。各図の識別番号は、図表名後の括弧内に記載した。なお、図 中の水深データは水深分布が分かりやすくなるように、データがない場所についても補間 処理を行っているが、SDBの解析では衛星画像の画素に対応するように最近傍法でリサンプ リングしたデータを使用しており、データの無い場所への補間処理等は行っていない。

海域	枝番号	図名	原図番号	測量年月	備考
仙台	1	仙台	A011301	2011. 11	航空レーザー
	2	仙台塩釜港	E213011	2011.9-11, 2012.5-8	マルチビーム
	3	仙台塩釜港	E213012	2011. 9–11, 2012. 6–	マルチビーム
				8, 12, 2013. 8	
銚子	1	銚子港及付近	A013301	2013. 8	航空レーザー
	2	鹿島港南部	A013302	2013. 8	航空レーザー
	3	銚子港	E313023A	2013. 5	マルチビーム

表 7.3 水路測量データ一覧

	4	銚子港	E314013	2014. 7	マルチビーム、一部シング
					ルビーム
鎌倉	1	相模湾	E314024	2014. 1	マルチビーム
両津湾	1	両津湾	907003	2007. 7	マルチビーム
浜名港	1	浜名港	E303031A	2003. 7-10	マルチビーム、一部シング
					ルビーム
尾鷲	1	尾鷲湾	E404049A	2004. 5-10	マルチビーム、一部シング
					ルビーム
	2	尾鷲港	E404051A	2004. 5-10	マルチビーム、一部シング
					ルビーム
	3	尾鷲港	E412018A	2012.4-7, 9, 11	マルチビーム、一部シング
					ルビーム
	4	尾鷲港付近	E404016A	2004. 5-10	マルチビーム、一部シング
					ルビーム
的矢	1	相差漁港	E405022A	2005. 7-10	マルチビーム、一部シング
					ルビーム
宇和島湾	1	宇和島湾	A0063024	2006. 7	航空レーザー
佐田岬	1	佐田岬灯台付近	A006302	2006. 7	航空レーザー測量
高知	1	高知港及び付近	E502033A	2002. 8	マルチビーム
青海島	1	青海島付近	E710503	2010	マルチビーム
石垣	1	西表島東方(その	DB91001	1990. 9	シングルビーム(4 素子)
		1)			
	2	西表島東方(その	DB91002	1990. 9	シングルビーム(4 素子)
		2)			
	3	竹富・小浜航路	EB04003	2004. 6	シングルビーム(4 素子)
	4	石垣港	EB12002	2012. 7	マルチビーム
	5	石垣港	EB13003	2013. 7	マルチビーム
	6	石垣港付近	EB13004	2013. 11	マルチビーム
	7	波照間島	10502	1987	沿岸の海の基本図
	8	西表島北部	10580	1990	沿岸の海の基本図
	9	石垣島南部	10601	1991	沿岸の海の基本図
波照間島	1	波照間島	-	2015. 2	航空レーザー

図 7.29 仙台沖水路測量データ(航空レーザー) (p04n001, p04n002, p04n003)

図 7.30 仙台沖水路測量データ(マルチビーム) (p04n001, p04n002, p04n003)

図 7.31 銚子沖水路測量データ(航空レーザー) (p12n001)

図 7.32 銚子沖水路測量データ(マルチビーム、シングルビーム) (p12n001)

図 7.34 両津湾水路測量データ(マルチビーム) (p15n001)

図 7.35 浜名港水路測量データ(マルチビーム、シングルビーム) (p22n001)

図 7.36 尾鷲湾水路測量データ(マルチビーム、シングルビーム) (p24n001)

図 7.37 相差漁港水路測量データ(マルチビーム、シングルビーム) (p24n002, p24n003)

図 7.38 深川湾水路測量データ(マルチビーム) (p35n001)

図 7.39 佐田岬水路測量データ(航空レーザー) (p38n001)

図 7.40 高知沖水路測量データ(マルチビーム) (p39n001、p39n002)

図 7.41 石西礁湖水路測量データ(シングルビーム) (p47n001, p47n005)

図 7.42 石西礁湖水路測量データ(沿岸の海の基本図) (p47n001, p47n005)

図 7.43 石西礁湖水路測量データ(シングルビーム測深)(p47n002)

図 7.44 石西礁湖水路測量データ(沿岸の海の基本図) (p47n002)

図 7.45 石西礁湖水路測量データ(マルチビーム) (p47n003)

図 7.46 石西礁湖水路測量データ(シングルビーム) (p47n003)

図 7.47 石西礁湖水路測量データ(沿岸の海の基本図) (p47n003)

図 7.48 石西礁湖水路測量データ(マルチビーム) (p47n004)

図 7.49 石西礁湖水路測量データ(沿岸の海の基本図) (p47n004)

図 7.50 波照間水路測量データ(航空レーザー) (p47n010)

第8章 SDB の解析試験と手法の比較

本章では、第6章で説明した SDB 解析システムを用いて実際の衛星画像を試験的に解析 した結果を示す。SDB における放射量解析手法は複数の手法があるが、本事業では Lyzenga (1978)の方法を採用している。本章では比較のために、最も基本的な方法である Banny and Dawson (1983)の方法および IHO-IOC GEBCO Cook Book で採用されている Stumpf and Holderied (2003)の方法でも解析した。

8.1 解析エリアと使用データ

ここでは、石垣島沖と仙台沖の2海域を選定した。解析対象とした画像一覧を表 8.1 に、 画像の概観を図 8.1-図 8.4 に示す。なお、石垣島沖の画像は9.1 節で扱う衛星画像デー タの一部でもある。仙台沖については購入検討時に画像を検索する際に利用するブラウズ 画像上では、目視判読により海底の情報が抽出可能か確認できなかったため、複数時期の画 像を購入した。

該当海域を選定したのは、石垣島沖及び仙台沖のマルチビーム音響測深データ (海上保 安庁)、と比較するためである。石垣島沖の測深データは 2012 年 7 月、2013 年 7 月、2013 年 11 月に測量したデータを基に作成され、仙台沖の測深データは 2013 年 7 月、2013 年 8 月に測深されたデータである。

衛星画像解析は、6.2節で説明した解析システムを用いて実施した。幾何補正は、国土地 理院の10mメッシュDEMデータを用いたオルソ補正を行い、GCPを取得した石垣については GCPを用いた補正も行った。水深の学習データは上記のデータからそれぞれ約半分のデータ を無作為抽出により選定して使用した。潮高補正には、表 8.2の位置にある検潮所のデー タを用いてそれぞれ補正処理を実施した。

放射量解析による水深推定は、方法1:Lyzenga (1978) の方法、方法2:Stumpf et al (2003) の方法、方法3:Benny and Dawson (1983) の方法の三つの異なる方法で実施し、 それぞれ SDB を作成し、精度評価を実施した。

図番号	識別番号	画像 ID	エリア	撮像日	オフナディア角	衛星	面積
図 8.1	A4	1030010022421B00	石垣島沖	2013 4/29	21°	Worldview2	145 km^2
図 8.2	B1	103001001F64B500	仙台沖	2013 1/28	22°	Worldview2	26 km^2
図 8.3	B2	103001002F044300	仙台沖	2014 4/2	23°	Worldview2	26 km^2
図 8.4	B3	103001001AC8E500	仙台沖	2012 7/19	16°	Worldview2	26 km^2

表 8.1 試験解析データー覧

海域	検潮所位置			
石垣島沖	N24. 333° E124. 166°			
仙台沖	N38. 266° E141. 000°			

表 8.2 対象海域の検潮所

図 8.1 石垣島沖衛星画像 (A4)

図 8.2 仙台沖衛星画像 (B1)

図 8.3 仙台沖衛星画像(B2)

図 8.4 仙台沖衛星画像 (B3)

8.3 解析結果

8.3.1 石垣沖解析結果

石垣沖の音響測深データの水深分布図を図 8.5 に示す。対象海域では岸壁から 500-1000m 程度離れた沖合の 0-30m の水深データがある。該当域はサンゴ礁も含む海域であるが、詳細 な分布域の情報はない。潮位高補正に用いた補正量は表 8.3 の通り 1.19m であった。

幾何補正精度については 9.3 節で述べる為ここでは詳細は述べないが、水平誤差で約 3m 程度であり、IHOの基準を満たしている。

方法1から方法3の解析により得られた SDB を図 8.6-図 8.8 にそれぞれ示す。どの方 法も学習データである図 8.5 の水深データがある周辺は比較的一致しているように見える。 図 8.9-図 8.11 は、それぞれの方法による水深推定値と学習データの水深をプロットして おり、どの水深で高い相関があるか分かる。方法1は、どの水深でも高い相関があるが、方 法2 は水深により偏りがあり、方法3 はばらつきが大きい。

表 8.4に、各方法による誤差の統計値をまとめた。精度評価に使用したデータはマスク 領域を除く図 8.5 で示した全水深データであり、学習データの約2倍である。水深 0-15m での水深推定誤差は最も良い Lyzenga (1978)の方法の結果で±1.34m であった。IHOの基 準は水深の関数なので今回の結果と直接比較はできないが、15mまでの許容誤差は 0.50-0.54m であるので、いずれにしても同基準を満たしていない。

図 8.12 および図 8.13 は解析画像の一部を拡大して水路測量結果と比較した例である が、水深 5-10m ではどの方法でも水路測量結果と比較的同じような水深分布をしている。し かしながら、方法 2 では、比較的水深を浅く算出しており、方法 3 では、海底がサンゴなど の場所を、砂地などと比較して水深を深く算出する傾向があることが分かる。

海域	潮高補正量(エリア名)
石垣島沖	1.19m(A5)

表 8.3 石垣島沖の潮高補正量

解析方法	方法1	方法 2	方法 3			
学習データ数	941	941	941			
検証データ数	1919	1919	1919			
誤差の絶対値の平均(m)	1.29	1.45	1.93			
誤差の絶対値の標準偏差(m)	1.05	1.12	2.03			
誤差の 95%信頼区間の最大値(m)	± 1.34	± 1.50	± 2.02			

表 8.4 水深推定誤差まとめ

図 8.5 石垣島沖の水深データ(音響測深)

図 8.6 方法1による SDB

図 8.7 方法2による SDB

図 8.8 方法3による SDB

水路測量(音響測深)の水深(m)

図 8.9 方法1における推定水深と学習データの水深の関係

水路測量(音響測深)の水深(m)

図 8.10 方法2における推定水深と学習データの水深の関係

図 8.11 方法3における推定水深と学習データの水深の関係

図 8.12 解析画像の比較例1

図 8.13 解析画像の比較例 2

8.3.2 仙台沖解析結果

仙台沖の水深分布図を図 8.14 に示す。一部沿岸付近の水深データは 10m 未満であった が、ほとんどのデータは 10m より深かった。潮位高補正に用いた補正量を表 8.5 に示す。

仙台では、3時期の衛星画像を購入したが、GISの画像強調機能により、各画像の海域の 輝度変化を強調した画像を図 8.15~図 8.17 に示す。

幾何補正精度検証については、石西礁湖のみで行っており、ここでは実施していない。石 西礁湖の結果については 9.3 節にまとめたが、水平誤差で約 3m 程度であり、IHOの基準を 満たしていた。

方法 1~方法 3 の各方法で、本海域では適切な回帰係数が求まらず、SDB を作成できなかった。適切な回帰係数が求まらない原因として、水深データが非常に浅い 2m 以浅のデータもしくは 10m 以深のデータに偏っていたことが挙げられ、方法 1 では最小二乗法の際に行列のランクが未知数未満となり、方法 2、方法 3 では相関係数が 5.0 未満となった。現状の解析システムでは、上記の場合は解析不能と判定する。

図 8.18は、方法1の水深推定式のパラメータを既存のデータから推定して値を与えた場合の解析結果だが、相対的には海底地形を推定できる可能性があることを示唆している。今回のデータでは適切な水深を推定できなかったが、2-10mの水深での追加のデータや周辺のデータセットなどから適切なパラメータを取得することができれば、今回解析に使用した画像からも適切な SDB を作成できる可能性がある。

海域	潮高補正量(エリア名)
	1.4m (B1)
仙台沖	1.27m(B2)
	1.37m(B3)

表 8.5 仙台沖の潮高補正量

図 8.15 仙台沖衛星画像 (B1)

図 8.16 仙台沖衛星画像 (B2)

図 8.17 仙台沖衛星画像 (B3)

8.4 まとめ

本章における試験解析では、石垣島沖と仙台沖の2海域で解析を行った。石垣島沖のデー タでは解析により SDB(衛星海底地形図)が得られ、Lyzenga (1978)の方法が最も精度が よく、水深 0-15m における誤差は±1.34m (95%信頼区間の最大値)であった。IHOの基準は 水深の関数であるため今回の精度と直接比較はできないが、水深 0-15m における許容誤差 0.50-0.54m であるのでいずれにしても同基準を満たしていない。

仙台沖の解析結果については、水深 0-10m で十分なデータが得られず、解析に必要な解析 式の回帰係数が適切にもとまらず解析結果が得られていないが、追加の学習データが得ら れれば SDB を作成できる可能性がある。

衛星画像から水深を推定する基本的な解析方法は、文献調査や訪問調査および本章における試験解析の結果から、基本的にはLyzenga (1978)の方法を採用し、多様な海域での実証実験やシミュレーションの実施を行うことが衛星解析技術の精度を把握するには有効と考えられる。

Lyzenga (1978)の方法では、衛星画像データの他に水深の実測データのサンプルが必要 である。解析に必要な水深データ数や条件の概略は SHOM の訪問調査である程度明らかにな っているが、SHOM ではポリネシアなどの透明度の高いサンゴ環礁域以外の事例は乏しいた め、日本沿岸については今後の調査で解析精度の検証とともに明らかにしていく必要があ る。また、最新の研究手法(Lyzenga et al. (2006)、Kanno et al. (2013 accepted)) では、サンプルデータを必要としない方法についても研究が行われており、将来的には機能 を拡張することで、効率化や精度向上等の改良も行える可能性がある。

第9章 石西礁湖における位置精度に関する調査

本章では、石西礁湖において、衛星画像の水平方向の位置精度の検証を行った結果について示す。

9.1 衛星画像データ

本調査にあたり、石西礁湖と仙台周辺の画像を詳細は表 9.1 に示す通り購入した。図 9.1 に石垣島石西礁湖エリアにて購入した衛星画像の全体図を、図 9.2-図 9.7 に画像を示す。

図番号	識別番号	画像 ID	エリア	撮像日	オフナディア角	衛星	面積
図 2	A1	103001002746BE00	石西礁湖	2013 9/28	21°	Worldview2	$187 \ \mathrm{km^2}$
図 3	A2	103001001C0E5F00	石西礁湖	2012 10/2	19°	Worldview2	$157 \ \mathrm{km^2}$
図4	A3	103001002665D100	石西礁湖	2013 9/28	18°	Worldview2	$157 \ \mathrm{km^2}$
図 5	A4	1030010022421B00	石西礁湖	2013 4/29	21°	Worldview2	$145~{ m km}^2$
図 6	A5	103001002746BE00	石西礁湖	2013 9/28	21°	Worldview2	28 km^2

表 9.1 購入衛星画像の一覧

図 9.1 石西礁湖購入衛星画像の概観

図 9.2 西表島東部の購入衛星画像(A1)

図 9.3 石西礁湖中央部の購入衛星画像(A2)

図 9.4 石西礁湖中央部の購入衛星画像(A3)

図 9.5 石垣島西部の購入衛星画像(A4)

図 9.6 西表島北東部の購入衛星画像(A5)

図 9.7 仙台の購入衛星画像(B1)

9.2 現地調査

2014年7月23日~30日に沖縄県石垣島の石西礁湖周辺地域において、衛星画像の幾何補 正および水平方向の位置精度検証用に地上基準点 (GCP:Ground Control Point) 取得に伴 う GPS 計測を実施した。

衛星画像上の GCP を取得するには、衛星画像中の対象画素に対応した水平方向の位置計測 が必要となる。例えば図 9.8 のように衛星画像と対応する点を、GPS 計測機 (Geo 7 X, Trimble 社製) を用いて計測した。GCP 計測に用いた GEO7X の諸元を表 9.2 に示す。なお、 計測の際には、図 9.9 に示すように三脚に GEO 7 X 本体を取り付けて計測を行った。

GCP 計測の際には一点当たりの観測時間は 10 分間とし、一秒毎に計測を行うことでその 中央値を観測結果とした。GCP 計測を行った位置を図に示す。各計測地点は I, J, K の後に 番号がついた名称をつけている。

本体概観	
DGNSS 精度(後処理)	コード DGPS: 50cm センチメートルエディション: 1cm
DGNSS 精度(リアルタイム)	コード DGPS: < 1m センチメートルエデ ィション: 1cm
GLONASS	0
Galileo	0
QZSS(準天頂)	0
BeiDou	0

表 9.2 GPS 計測機 GE07X の精度と利用可能な人工衛星

図 9.8 GCP 計測地点と衛星画像上の対応点

図 9.9 GE07X 本体に三脚を取付けた際の様子(地点 J-11 観測時)

図 9.10 石西礁湖エリア GCP 観測位置

計測された位置はソフトウェア(PathFinederOffice、TRIMBLE 社)を用いて、ディファ レンシャル補正(differential correction)を行った。ディファレンシャル補正とは位置 座標が正確に判明している地点(基準局)で、GPS 計測で得られた位置座標と正確な位置座 標の差分により得られた誤差を補正値として使用することで、GPS の精度を向上させる処理 である。ディファレンシャル補正を行った後の位置観測結果を表 9.3 に示す。この際、水 平精度と 10 分間観測における標準偏差も PathFinederOffice を用いて出力した。

全体を通して、K-16 を除けば水平精度は 0.1m、標準偏差は最大 0.31mとなった。K-16 に関して、水平精度と標準偏差共に悪くなっている。これは、K-16 観測環境は図 9.11 に示 す通り比較的高い木が沢山あったため、GPS 衛星電波の受信環境が悪かったためと推測され る。

		GE	07	水亚辉中	 插滩	
地点名	現地写真	(ディファレン	シャル補正済)	√平相及 [m]	惊 华 偏 <u>左</u>	
		経度	緯度		[m]	
I-10		123. 871211808	24. 262811632	0. 1	0. 038593	
I-12		123. 878746847	24. 257754027	0. 1	0. 044468	
I-15		123. 883903741	24. 274595371	0.1	0. 054233	
I-16		123. 872558133	24. 276474582	0. 1	0. 041934	
I-17		123. 880774290	24. 282844696	0. 1	0. 040351	
I-24		123. 897121724	24. 296507005	0. 1	0. 091753	

表 9.3 GCP 観測結果

I-27	it.	123. 893694841	24. 286389075	0. 1	0. 066072
I-32		123. 908557731	24. 320715967	0. 1	0. 045449
I-34		123. 906329337	24. 313755374	0. 1	0. 054000
I-38		123. 916408489	24. 339113136	0. 1	0. 082372
I-41		123. 924679595	24. 345519148	0. 1	0. 055705
I-42		123. 927235227	24. 344577312	0. 1	0. 046897
I-43		123. 935264360	24. 351475489	0. 1	0. 053419

I-44	123. 939796370	24. 361339598	0. 1	0. 061686
I-45	123. 920876879	24. 368132815	0. 1	0. 059515
I-46	123. 935859627	24. 365141696	0. 1	0. 019379
I-48	123. 915875581	24. 371332553	0. 1	0. 043820
I-49	123. 915563695	24. 377880285	0. 1	0. 062010
I-51	123. 911838435	24. 379744553	0. 1	0. 062126
I-52	123. 908160051	24. 381914893	0. 1	0. 033770

I-54	123. 906991627	24. 314995280	0. 1	0. 036132
I-55	123. 927921651	24. 353489358	0. 1	0. 052010
I-59	123. 883143031	24. 272063635	0. 1	0. 003798
I-60	123. 875308359	24. 288626844	0. 1	0. 034279
J-4	124. 159378216	24. 333795885	0. 1	0. 056909
J-7	124. 160229730	24. 339808040	0. 1	0. 044084
J-11	124. 142754131	24. 348403146	0. 1	0. 054803

J-13	124. 155153643	24. 349965258	0. 1	0. 060730
J-17	124. 137701346	24. 354738656	0. 1	0. 048322
J-20	124. 127895292	24. 363811550	0. 1	0. 053101
J-22	124. 118246806	24. 361873425	0. 1	0. 076576
J-23	124. 115298883	24. 369549285	0. 1	0. 153363
J-24	124. 139259617	24. 372953504	0. 1	0. 063442
J-26	124. 153457213	24. 340227427	0. 1	0. 053613

J-28		124. 147574762	24. 339013542	0. 1	0. 170684
J-29	5	124. 145467082	24. 338292066	0. 1	0. 312147
K-2		123. 991876622	24. 345217773	0. 1	0. 033483
K-3		123. 977214810	24. 349277183	0. 1	0. 055635
K-5		123. 966286232	24. 348584327	0. 1	0. 055112
K-6		123. 971377932	24. 342572747	0. 1	0. 039637
K-7		123. 951685698	24. 332100577	0. 1	0. 062846

K-10	123. 989358477	24. 331446888	0. 1	0. 046603
K-11	124. 087332712	24. 323316306	0. 1	0. 035503
K-13	124. 079839259	24. 331578566	0. 1	0. 037086
K-14	124. 092882771	24. 336666785	0. 1	0. 064745
K-16	124. 099578601	24. 320392107	0. 2	0. 265324
K-18	124. 078231594	24. 325348413	0. 1	0. 076556

K-21	124. 001064293	24. 253687910	0. 1	0. 074578
K-27	123. 993692248	24. 239144432	0. 1	0. 052322
K-29	123. 997570662	24. 232833319	0. 1	0. 035702
K-34	123. 990597558	24. 334366715	0. 1	0. 069293
K-35	124. 087486086	24. 319503159	0. 1	0. 027999
K-39	124. 088923783	24. 329125409	0. 1	0. 035031
K-41	124. 012745119	24. 230234013	0. 1	0. 049364

K-42	124. 007362159	24. 221193545	0. 1	0. 074360
K-45	124. 026865839	24. 240065013	0. 1	0. 052900

図 9.11 観測点 K-16 の写真

9.3 幾何補正と水平位置精度の検証

ここでは、現地調査で取得した GCP を用いて、幾何補正および幾何補正後の衛星画像の水 平方向の位置精度の検証を行った。まず、図 9.12 に示すフローに従い、オルソ幾何補正お よび GCP を用いた幾何補正を行った。オルソ補正には数値標高モデル (DEM: Digital Elevation Model) が必要となるが、ここでは国土地理院の 10m メッシュの DEM を用いた (図 9.13)。石西礁湖の衛星画像に対してオルソ補正を行った結果を図 9.14 に示す。GCP を用いる幾何補正に使用した GCP データの分布については図 9.15 に示す。

図 9.15の画像中、赤枠で示したエリアについて、幾何精度検証を実施した。このエリア では、幾何補正に使用した GCP は 8 点で、精度検証にはこのデータを含む 15 点のデータを 使用した。

幾何補正後の水平位置の誤差について、表 9.4 にまとめた。オルソ補正後と GCP を用い た補正後でほとんど水平位置の誤差に差はなく、GCP を用いた補正のほうが若干誤差は大き くなった。GCP を用いた補正は、衛星の姿勢情報の誤差の影響が残っている場合などに有効 であるが、今回の結果からはほとんどその影響が残っていなかったと考えられる。オルソ補 正後と GCP を用いた補正後で誤差が大きい場所は、DEM の位置精度(10m)が衛星画像の空 間分解能(2m)と比較し小さいため、標高誤差の影響も考えられる。

IHOの水平位置の誤差の基準と比較すると、オルソ補正後とGCPを用いた補正後のどちらの場合も許容誤差以内に収まった(5m以下)。

図 9.12 衛星画像に対する幾何補正処理フロー

図 9.13 国土地理院 DEM(10mメッシュ)

図 9.14 オルソ補正結果

図 9.15 幾何補正に用いた GCP 地点

No	オルソ補正後の誤差[m]	GCPを用いた幾何補正後の誤差[m]	標高値[m]
1.00	5.71	4.04	9.40
2.00	2.42	0.97	5.00
3.00	1.93	6.72	2.00
4.00	2.00	2.16	4.90
5.00	2.06	1.36	28.80
6.00	2.67	2.42	0.00
7.00	2.00	3.50	39.80
8.00	1.33	0.71	23.90
9.00	1.78	1.27	9.20
10.00	4.13	3.13	22.00
11.00	1.63	1.86	14.90
12.00	1.08	0.24	30.90
13.00	2.20	1.62	35.60
14.00	0.82	0.52	12.40
誤差の平均	2.27	2.18	
誤差の標準偏差	1.27	1.73	
95%信頼区間の 最大値	2.93	3.09	

表 9.4 幾何補正後の水平位置の誤差