船舶電気装備工事 ハンドブック設 計 編

平成21年3月

社団法人 日本船舶電装協会

まえがき

船舶に挑いて，電気は，機関部と並んで推進に必要な要素となるとともに，船内全般の計測，情報伝達などの神経系統をも受け持っている。

近年，電気，電子技術の進歩がめざましく，船上に扑いても，安全運行の向上，省人化，省エネルギー化にその技術の応用が急速に進んでいる。このような状況下にあって，電気装備技術の向上もまた，船の大小を問わず大いに要求されることである。

社団法人日本船舶電装協会におおては，このような趨勢をふまえて，平成 8 年度事業とし て平成 9 年 3 月に，主として総トン数 20 トン以上の船舶を対象とした「船舶電気装備工事 ハンドブック（設計編）」の改訂版を刊行した。

しかしながら，その後の電気•電気設備の進歩は著しいものがあり，また，規格の改正等 もあり一部実情にそぐわない面も生じてきている。それらの改正を含め平成 19 年度及び 20年度事業として，「船舶電気装備工事ハンドブック（設計編）」の総見直しを行い，第2回改訂版の発行を企画し，このたび本書が発行されることとなった。

本ハンドブックが，上記の要望に応えるべく，今後の船舶電装設計に大いに役立と期待で きる。

刊行にあたっては，日本財団からの助成老頂いたことに多大の感謝を申し上げるとともに，執筆，編集に力を尽くされた委員及び関係者の方々に心から謝意を表したい。また，委員会 の事務局として資料検索，編集，発行に携わっていただいた日本船舶電装協会の方々のご苦労に対しても，併せて謝意を表する。

平成 21 年 3 月

社団法人日本船舶電装協会船舶電気装備工事ハンドブック作成委員会委員長 坪井 邦夫

目
 次

第1章 電装設計一般設計業務
1.1 設計業務 － 1
1．1．1 仕事の流れ 1
1．1．2 基本設計と詳細設計 $\cdot 2$
1．1．3 主要目表 4
1．1．4 要目一覧表 4
1．1．5 メーカーリスト ． 4
1．1．6 電気部仕様書 5
1．1．7 内航タンカーの電気部仕様書か例 7
1.2 船舶関倸法規，船級規則及及で規格 25
1．2．1 船舶安全法の体系 25
1．2．2 船舶安全法及び関倸法令の用語 28
1．2．3 船舶に関する条約等 33
1．2．4 船級協会の規則 33
1．2．5 国内•外の関連規則等 34
1.3 電気設備な設計 36
1．3．1 一般的要求性能 36
1．3．2 電気機器の外被の保護形式とその試験方法 39
1．3．3 電気絶縁の而熱クラス 46
1．3．4 電気機器の絶緑抵抗及ひ耐電圧 53
1．3．5 電気機器の温度上昇限度 56
1．3．6 回転機な過負荷耐力及で過速度耐力 61
1．3．7 回転機 $\mathcal{\text { 使用及で定格 }}$ 62
第2章 電源装置
2.1 概要 65
2.2 船舶の電気方式 65
2．2．1 交•直流方式の変遷及び特徵 65
2．2．2 直流式 66
2．2．3 交流式 66
2.3 発電機 66
2．3．1 発電機の形式 66
2．3．2 交流発電機 67
2．3．3 配電計画 75
2．3．4 発電機の容量と台数 76
2．3．5 電力調查表 76
2．3．6 主軸駆動発電機 85
2.4 変圧器 92
2．4．1 種類と構造 93
2．4．2 単巻変圧器 95
2．4．3 低圧変圧器（ 440 V 系）と高圧（ 6600 V 系）の違に 95
2.5 蓄電池 96
2．5．1 一般給電用蓄電池 96
2．5．2 無線用蓄電池 96
2．5．3 蓄電池の容量計算と台数 96
2．5．4 蓄電池の寸法と性能 101
2.6 非常電源 103
2．6．1 非常電源の種類 103
2．6．2 臨時の非常電源 103
2．6．3 給電対象設備及て給電時間 103
2．6．4 電力調査表 103
第3章 配電装置
3.1 配電方式 109
3．1．1 配電方式の種類 109
3．1．2 重要負荷への給電方式 110
3．1．3 非常電源給電方式 113
3．1．4 絶縁監視证置 114
3.2 配電盤 114
3．2．1 主配電盤 114
3．2．2 充故電盤 116
3．2．3 非常配電輼 119
3．2．4 保護装置の選定•適用 119
3.3 配線器具 131
3．3．1 区電盤及で分電盤 131
3．3．2 船外給電箱 131
3．3．3 停泊中の陸上電力シスデム 132
3．3．4 その他の配線器具 133
3.4 短絡電流 134
3．4．1 概説 134
3．4．2 グラフィック方式 134
3．4．3 パーセントインピーダンス方式 139
3．4．4 簡略計算法（NK） 144
第4章 動力装置及び電熱装置
4.1 概要 145
4.2 電動機及て始台動機 145
4．2．1 電動機 145
4．2．2 電動機の始動方法 146
4．2．3 電動機の始動方法の選定 154
4．2．4 電動機始動方法の検討例 158
4．2．5 電動機の制動法 160
4．2．6 電動機の制御 161
4.3 電気推進システム 163
4．3．1 電気推進シスデムの概要 163
4．3．2 電気推倠シスデムの駆動方式 163
4．3．3 高調波対策 166
4.4 電熱装置 166
4．4．1 機関室用力埶器 166
4．4．2 厨房用設備 166
第5章 ケーブル，コードの選定
5.1 ケーブル，コードの選定 167
5．1．1 絶縁体種別の選定 167
5．1．2 保護被覆種別の選定 167
5．1．3 光ファイバーケーブル 168
5．1．4 高圧ケーブル 168
5．1．5 軽量化ケーブル 169
5．1．6 その他のケーブル 171
5.2 ケーブル類の許容電流 171
5.3 ケーブルの短絡容量 172
5.4 配電回路の電圧降下率 174
5.5 ケーブルサイズの決定法 176
第6章 照明䧇置，船灯及て俗号灯
6.1 概説 177
6.2 照明の基礎 177
6.3 灯数决定法 180
6.4 投光照明 181
6.5 船灯の種類と性能 182
6.6 防爆灯 193
6.7 信号灯及て林票識灯 193
6.8 表示灯 195
6.9 電球型蛍光灯 195
第7章 船内通信•計測•警報装置及で自動制御
7.1 船内通信•計測•警報装置 197
7．1．1 エンジンテテレグラフ 197
7．1．2 舵角指示器 197
7．1．3 回転計 197
7．1．4 電話装置 197
7．1．5 ベル，ホーンなど 198
7．1．6 汽笛 198
7．1．7 摭声装置 199
7．1．8 警報装置 199
7.2 自動制御及て遠隔制御装置 204
7．2．1 一般 204
7．2．2 周囲条件 204
7．2．3 電源システム 211
7．2．4 システムの設計 213
7．2．5 発電装置の自動•遠隔制御 215
7.3 自動制御などの装備機器 217
7．3．1 発電機操彩逆装置 217
7．3．2 機関部補機制御及及て監視装置 218
7．3．3 ディーゼル主機操䋐装置 220
7.4 機関部監視警報シスデム 221
7．4．1 集中制御室の監視警報シスデム 221
7．4．2 機関士居住区の警報システム 227
7.5 機関部重要機器の安全シスデム 227
7.6 自動制御装置の監視•警報装置 230
7．6．1 監視装置（アナンシェータ） 230
7．6．2 データロガー 231
7．6．3 ボイスアラーム 232
第8章 航法装置及て墲線装置
8.1 概説 233
8.2 船内時計 233
8.3 磁気コンパス 233
8.4 ジャイロコンパス 233
8.5 音響測深機 234
8.6 船速距離計（ログ） 234
8.7 ソナー 234
8.8 無線方位測定器 235
8.9 風向風速計 235
8.10 自動操舵装置（オートパイロット） 235
8．11 GPS 航法装置 235
8.12 ロラン C 受信機 236
8.13 レーダー 236
8.14 自動衝突予防援助装置（ARPA） 237
8.15 カラープロッター 237
8.16 電子海図情報表示装置（ECDIS） 238
8.17 ワンマン・ブリッジ・コントロール・シスデム 238
8.18 ファクシミリ（ファックス） 239
8.19 海事衛星通信装置 240
8.20 無線通信装置 240
8.21 船舶自動識吅陵置（AIS） 242
8．22 GPS コンパス 243
8.23 航海情報記録装置（VDR） 244
8.24 船舶保安警報装置（SSAS） 244
8.25 船舶長距雀幟別追跡装置（LRIT） 244
第9章 電路系統図作成要領
9.1 概要 246
9.2 ケーブルの選定 246
9.3 主電路系統図 249
9．3．1 発電機回路 250
9．3．2 船外給電回路 250
9．3．3 変圧器回路 250
9．3．4 動力回路 250
9．3．5 制御回路 250
9．3．6 低圧給電回路 250
9.4 照明電灯電路系統図 251
9．4．1 照明灯回路 251
9．4．2 航海灯回路 252
9．4．3 信号灯回路 253
9.5 船内通信装置，航海計器及び無線装置電路系䋁図 255
9.6 機関部計装制御装置電路系統図 255
9．6．1 制御機器一覧表 255
9．6．2 電源装置回路 255
9．6．3 発電機関制御計十装系統回路 255
9．6．4 主機制御系統回路 255
9．6．5 温度計回路 256
9．6．6 温度，圧力警報回路 256
9．6．7 タンクその他の警報回路 256
9．6．8 運転表示回路 256
第10章 電気機器配置図作成要領
10.1 概要 257
10.2 側面図 258
10.3 動力装置機器配置図 258
10.4 照明装置配置図 258
10.5 通信及て䘛海計測垶置配置図 258
10.6 機関部計測制御脿置配置図 258
付録
1．国際単位系 259
2．ケーブルの許容電流 263
3．補機器 $の$ 名称と英文略語 264
4．交流電動機の定格一覧 266
5．MCB の選定例 270
6．各種計算式 272
7．船舶設備規程（航海用具 属具表）（抜粋） 279
8．漁船特殊規程（航海用具 別表）（拔粋） 284
9．電気関係規格一覧 286
10．結線図シンボル表 287
11．船用電気機器の警告表示 292

