

船舶の電気設備に関する技術入門書

先輩達が教える初歩からの電気

(社)日本船舶電装協会

第 1 編 も く じ

ページ
第1章 そもそも電気の始原はなに \cdots 1
1. 電気エネルギー生成に寄与する素粒子1
2. 電子のふる舞いが電気(自由電子)3
3. 電子が動き回る場とは(電界、磁界、電磁界の関係)5
(1) 電界とは何か
(2) 磁界とは何か7
(3) 電磁界とは何か9
4. 電子と磁石(磁石の成り立ち)11
(1) 電子の円運動とスピンの関係11
(2) 電子は最小の磁石だ13
(3) ものによって磁性の現れ方が違う14
5. 電流が永久に流れるわけ(超伝導の原理)14
6. 電界と磁界の関係17
(1) 電界中での電子のふる舞い17
(2) 磁界の中での電子のふる舞い17
(3) 電界と磁界の関係はこうだ18
第 2 章 電気とはどういうものか23
1. 電子のふる舞が電気なのです23
2. 電気はどのようにしてつくられるか23
3. 静電気24
(1) 静電気の(+)と(-)はこういう意味なのです26
(2) 静電気にはものによって序列があります26
4. 動電気26
(1) 動電気の(+)と(−)はこういう意味だ28
(2) 電流は水のように高い電位から低い電位の方に流れます29
(3) 動電気は自由電子が動くことだ30
(4) 電子の動きを妨げるのは抵抗なのです31
(5) 電子の移動を妨げる目安が電圧降下です32
(6) 電流の大きさ、電荷(電気を帯びた電子)の大きさ32
第 3 章 電気回路 · · · · · · · 34
1. 電気回路とはどんなもの34
2. 電気回路の特徴34
3. 電気の流れ35
4. 電気回路の抵抗35
5. 簡単な直流の電気回路36
6. オームの法則37

	ページ
,	7. 直列接続と並列接続40
;	8. 直並列回路の合成抵抗44
:	9. 直流回路の電源の接続45
	(1) 蓄電池の直列接続45
	(2) 蓄電池の並列接続45
	(3) 蓄電池の接続回路45
笙	4 章 電流の熱作用48
	1. 発熱のメカニズム48
	2. ジュールの法則49
	3. 熱の発生 ·······51
•	5. 然 7. 元 上 51
第	5章 電力と電力量52
	1. 電力とはなにか52
:	2. 電力量とはなにか
笜	6章 磁気と電流の関係
	1. 地磁気
	1. 地域X 2. 磁石の性質 ·······56
	3. 磁気のクーロンの法則57
	4. 磁界と磁力線58
	5. 磁気誘導59
	3. アンペールの右ネジの法則60
	7. ヒステリシス60
	8. 電磁力62
((1) 電磁力が発生するわけ ······65
	(1) 电磁力が発生するわり
	9. 電磁誘導作用65
,	(1) 誘導起電力は何故発生するか66 6
	(2) 磁界を動かしたとき
	(4) 起電力の大きさ ····································
	(5) 起電力と方向 68 (a) こ りませ 20
	(6) うず電流 ····································
	(7) うず電流と損失
	(8) うず電流を抑える
	(9) 誘導電動機モデル ····································
	(10) 自己誘導作用72
	(11) 相互誘導作用74

	ページ
第7章 静電気	$\cdots 75$
1. 静電気のクーロンの法則	$\cdots \cdot 75$
2. 静電誘導	····76
(1) 静電誘導とは	····76
(2) 電磁誘導との違い	$\cdots \cdot 76$
3. 電界とは	$\cdots 77$
4. 電気力線	$\cdots 77$
(1) 電気力線とは	$\cdots 77$
(2) 磁力線との違い	$\cdots 77$
5. 静電容量とは	78

第 2 編 も く じ

>13	~~
第1章 交流の電気の基本的な性質・	1
	1
	1
	5
第2章 交流の電気の発生	$\cdots \cdots $
1. なぜ交流の電気が発生するのか	· ····· 7
(1) フレミングの右手の法則によ	る起電力の発生7
(2) 交流起電力の発生	$\cdots \cdots $
① 回転電機子型発電機の概念	図及び簡略構造7
② 交流起電力の発生原理	9
(3) 単相交流発電機	11
① 単相交流発電機の概略構造	11
	11
	11
① 三相交流発電機の簡略構造	12
② 発生電圧波形	12
	12
3. 発電機の回転数と周波数の関係	13
	14
	15
	15
	15
	び電流と磁束の関係16
	16
	17
	生する磁界17
	17
	18
	界の発生18
	2極の三相誘導電動機)20
⑥ 直流発電機の原理(参考)	22
第3章 交流の数式化	24
	25
	26
	26

(3) 複素数表示	27
第4章 交流の電気の種類	28
1. 単相交流	
(1) 単相交流波形	
(2) 単相交流回路	
(3) 単相交流の電圧と電流	
2. 三相交流	
(1) 三相交流波形	
(2) 三相交流回路	
(3) 三相交流の定義	
(4) なぜ三相なのか	31
第5章 交流の電気の表し方	
1. 交流の大きさの表し方	
(1) 基本事項	
(2) 一般事項	
① 最大値	
② 平均値	
③ 実効値	
2. 各種交流の大きさの表し方	
(1) 基本事項	
① 条件 ···································	
② 特性値 ···································	
③ 交流波形例 ····································	
4. 三相交流の相順と位相	
5. 三相のつなぎ方 ····································	
(1) Y 結線の考え方 ····································	
(2) Δ 結線の考え方 ····································	
(3) 実際の結線	
① 電源の結線方式	
② 負荷の結線方式	
6. 三相接続における電圧と電流の現れ方の違い	
(1) Y - Y 結線 ··································	
① 回路図	
② 電圧ベクトル図	
(2) Y-Y結線における電圧と電流の考え方 ······	
① 回路図	

		0 .7
		~->
	② ベクトル図 ····································	
	(3) Δ – Δ 結線 ··································	
	② ベクトル図 ····································	
	(4) Δ - Δ 結線における電圧と電流の考え方 ····································	
	① 回路図	
	② ベクトル図	
	(5) V – Δ 結線 ··································	
	① 回路図	
	② ベクトル図	
	(6) V – Δ 結線における電圧と電流の考え方	48
绺	6章 交流の基本的な性質	40
夘	1. 交流の抵抗には3つの種類がある	
	, , , , , , , , , , , , , , , , , , , ,	_
	(2) 交流抵抗 (X _L : 誘導性リアクタンス) ····································	
	(3) 交流抵抗 (Xc: 容量性リアクタンス) ····································	
	(4) 3 つをベクトル的に合成したインピーダンス ($\mathbf{Z}[\Omega]$)	
	2. 交流の電気を抵抗、誘導性リアクタンス容量性リアクタ	
	に流したときの電圧と電流の関係	
	(1) 直流回路	
	① RL 直列回路 ····································	
	② RC 直列回路 ····································	
	③ RLC 直列回路 ····································	
	(2) 並列回路 ······	
	① RL 並列回路 ·······	
	② RC 並列回路 ······	
	③ RLC 並列回路 ·······	$\cdots \cdots 54$
笜	7章 交流の電力と電力量	55
Ж	1. 交流の電力には3種類ある	
	(1) 電圧と電流が同相の場合の電力波形	
	(2) 電流が電圧より $\frac{\pi}{2}$ 遅れている場合	56
	(3) 電流が電圧より $\frac{\pi}{2}$ 進んでいる場合 \cdots	
	(4) 電流が電圧より $ heta$ 遅れている場合 \cdots	58
	(5) 電流が電圧より $ heta$ 進んでいる場合 \cdots	59

2. 皮相電力とは何をする電力 ……………60

	ページ
(1) 皮相電力、有効電力及び無効電力の	関係60
(2) 電力から見た実効値	60
3. 有効電力とは何をする電力	61
4. 無効電力とは何をする電力	62
5. 電力の計算式	62
(1) 平衡三相交流回路の三相電力の計算	式63
6. 力率とは	66
7. 力率の考え方	66
(1) 力率の意味について	67
(2) 力率改善について	67
① 設備の有効利用を図る	67
② 電気料金の優遇	67
8. 交流の電力量	67
9. 電力と電力量について(補足)	68