船舶の電気設備に関する技術入門書

先輩達が教える初歩からの電気

（社）日本船舶電装協会

第 1 編 も く じ

第1章 そもそも電気の始原はなに
1．電気エネルギー生成に寄与する素粒子 1
2．電子のふる舞いが電気（自由電子） 3
3．電子が動き回る場とは（電界，磁界，電磁界の関係） 5
（1）電界とは何か 5
（2）磁界とは何か 7
（3）電磁界とは何か 9
4．電子と磁石（磁石の成り立ち） 11
（1）電子の円運動とスピンの関係 11
（2）電子は最小の磁石だ 13
（3）ものによって磁性の現れ方が違う 14
5．電流が永久に流れるわけ（超伝導の原理） 14
6 。電界と磁界の関係 $\cdot 17$
（1）電界中での電子のふる舞い 17
（2）磁界の中での電子のふる舞い $\cdot 17$
（3）電界と磁界の関係はこうだ －18
第2章 電気とはどういうものか － 23
1．電子のふる舞が電気なのです － 23
2．電気はどのようにしてつくられるか － 23
3 ．静電気 ． 24
（1）静電気の（＋）と（－）はこういう意味なのです － 26
（2）静電気にはものによって序列があります － 26
4．動電気 26
（1）動電気の $(+)$ と（ - ）はこういう意味だ － 28
（2）電流は水のように高い電位から低い電位の方に流れます －29
（3）動電気は自由電子が動くことだ － 30
（4）電子の動きを妨げるのは抵抗なのです － 31
（5）電子の移動を妨げる目安が電圧降下です $\cdot 32$
（6）電流の大きさ，電荷（電気を帯びた電子）の大きさ $\cdot 32$
第3章 電気回路 34
1．電気回路とはどんなもの $\cdot 34$
2．電気回路の特徴 $\cdot 34$
3．電気の流れ $\cdot 35$
4．電気回路の抵抗 － 35
5．簡単な直流の電気回路 $\cdot 36$
6．オームの法則 $\cdot 37$
ページ
7．直列接続と並列接続 40
8．直並列回路の合成抵抗 －44
9．直流回路の電源の接続 45
（1）蓄電池の直列接続 45
（2）蓄電池の並列接続 45
（3）蓄電池の接続回路 45
第4章 電流の熱作用 $\cdot 48$
1．発熱のメカニズム ． 48
2．ジュールの法則 49
3．熱の発生 51
第5章 電力と電力量 52
1．電力とはなにか ． 52
2．電力量とはなにか 53
第 6 章 磁気と電流の関係 56
1．地磁気 ． 56
2 。磁石の性質 ． 56
3．磁気のクーロンの法則 ． 57
4．磁界と磁力線 58
5．磁気誘導 －59
6．アンペールの右ネジの法則 －60
7．ヒステリシス － 62
8．電磁力 － 64
（1）電磁力が発生するわけ $\cdot 65$
（2）フレミングの左手の法則 65
9．電磁誘導作用 －66
（1）誘導起電力は何故発生するか －6
（2）磁界を動かしたとき －66
（3）導体を動かしたとき － 67
（4）起電力の大きさ －68
（5）起電力と方向 － 68
（6）うず電流 69
（7）うず電流と損失 70
（8）うず電流を抑える 70
（9）誘導電動機モデル $\cdot 71$
（10）自己誘導作用 72
（11）相互誘導作用 － 74
ページ
第7章 静電気 75
1．静電気のクーロンの法則 75
2．静電誘導 76
（1）静電誘導とは $\cdot 76$
（2）電磁誘導との違い 76
3．電界とは 77
4．電気力線 77
（1）電気力線とは 77
（2）磁力線との違い 77
5．静電容量とは 78
第 2 編 も く じ
第1章 交流の電気の基本的な性質 1
1．一般 1
2．交流とは 1
3．直流の電気との相違点 5
第2章 交流の電気の発生 7
1．なぜ交流の電気が発生するのか 7
（1）フレミングの右手の法則による起電力の発生 7
（2）交流起電力の発生 7
（1）回転電機子型発電機の概念図及び簡略構造 7
（2）交流起電力の発生原理 9
（3）単相交流発電機 11
（1）単相交流発電機の概略構造 11
（2）発生電圧波形 11
（4）三相交流発電機 11
（1）三相交流発電機の簡略構造 12
（2）発生電圧波形 $\cdot 12$
2．交流の電気は周波数がある 12
3．発電機の回転数と周波数の関係 $\cdot 13$
（1） 2 極交流発電機 $\cdot 14$
（2） 4 極の交流発電機 $\cdot 15$
（1） P 極の交流発電機 15
4．電磁力について $\cdot 15$
（1）アンペールの右ねじの法則及び電流と磁束の関係 16
（2）フレミングの左手の法則 16
（3）三相交流の回転磁界について 17
（1）同相電流によるコイルに発生する磁界 17
（2）同相電流による回転磁界 17
（3）対称三相交流電源 － 18
（4）三相交流電源による回転磁界の発生 18
（5）三相誘導電動機の原理（例 2 極の三相誘導電動機） $\cdot 20$
（6）直流発電機の原理（参考） －22
第3章 交流の数式化 24
1．交流を数式で表す方法（単相交流で説明） $\cdot 24$
2．交流の表記方法 $\cdot 25$
（1）瞬時値表示（波形表示） － 26
（2）ベクトル表示 26
ページ
（3）複素数表示 27
第4章 交流の電気の種類 28
1．単相交流 28
（1）単相交流波形 28
（2）単相交流回路 28
（3）単相交流の電圧と電流 － 28
2 。三相交流 29
（1）三相交流波形 29
（2）三相交流回路 30
（3）三相交流の定義 31
（4）なぜ三相なのか 31
第5章 交流の電気の表し方 33
1．交流の大きさの表し方 33
（1）基本事項 33
（2）一般事項 33
（1）最大値 33
（2）平均値 34
（3）実効値 34
2．各種交流の大きさの表し方 35
（1）基本事項 35
（1）条件 35
（2）特性値 $\cdot 36$
（3）交流波形例 36
3．位相とは何か 37
4．三相交流の相順と位相 40
5．三相のつなぎ方 40
（1）Y 結線の考え方 －40
（2）Δ 結線の考え方 $\cdot 41$
（3）実際の結線 － 41
（1）電源の結線方式 42
（2）負荷の結線方式 42
6．三相接続における電圧と電流の現れ方の違い 43
（1） Y － Y 結線 43
（1）回路図 43
（2）電圧ベクトル図 －43
（2） $\mathrm{Y}-\mathrm{Y}$ 結線における電圧と電流の考え方 44
（1）回路図 －44
ページ
（2）ベクトル図 $\cdot 44$
（3）$\Delta-\Delta$ 結線 45
（1）回路図 45
（2）ベクトル网 $\cdot 45$
（4）$\Delta-\Delta$ 結線における電圧と電流の考え方 46
（1）回路図 46
（2）ベクトル図 46
（5）V－Δ 結線 47
（1）回路図 47
（2）ベクトル図 47
（6）V－Δ 結線における電圧と電流の考え方 48
第 6 章 交流の基本的な性質 49
1．交流の抵抗には3つの種類がある 49
（1）直流抵抗 49
（2）交流抵抗（ X_{L} ：誘導性リアクタンス） 49
（3）交流抵抗（ X_{c} ：容量性リアクタンス） 50
（4） 3 つをベクトル的に合成したインピーダンス（ $\mathrm{Z}[\Omega]$ ） 51
2．交流の電気を抵抗，誘導性リアクタンス容量性リアクタンス に流したときの電圧と電流の関係 53
（1）直流回路 ． 53
（1）RL 直列回路 53
（2）RC 直列回路 ． 53
（3）RLC 直列回路 53
（2）並列回路 ． 54
（1）RL 並列回路 54
（2）RC 並列回路 ． 54
（3）RLC 並列回路 54
第7章 交流の電力と電力量 55
1．交流の電力には3種類ある 55
（1）電圧と電流が同相の場合の電力波形 55
（2）電流が電圧より $\frac{\pi}{2}$ 遅れている場合 56
（3）電流が電圧より $\frac{\pi}{2}$ 進んでいる場合 57
（4）電流が電圧より θ 遅れている場合 58
（5）電流が電圧より θ 進んでいる場合 59
2．皮相電力とは何をする電力 － 60
ページ
（1）皮相電力，有効電力及び無効電力の関係 60
（2）電力から見た実効値 $\cdot 60$
3．有効電力とは何をする電力 ． 61
4．無効電力とは何をする電力 －62
5．電力の計算式 ． 62
（1）平衡三相交流回路の三相電力の計算式 －63
6．力率とは －66
7．力率の考え方 －66
（1）力率の意味について －67
（2）力率改善について －67
（1）設備の有効利用を図る －67
（2）電気料金の優遇 －67
8．交流の電力量 $\cdot 67$
9．電力と電力量について（補足） $\cdot 68$

