項目			値	備考
本 体			チラーユニット	
外形寸法	珍寸法 幅 x 奥行き x 高さ		1960mm x 1530mm x 1980mm	
質量			約860kg	
冷媒			R404A 10kg	
塗装色			7.5BG7/2	
電源			440V 60Hz 3Ph	
冷却能力			12.5kW	
圧縮機	種類		半密閉型レシプロ式	Bock製
			インバータ搭載	
	型式		HGX22e/125-4S	
	電動機	呼称出力	2.2kW	
		定格電流	6. 2A	
冷媒	種類		キャンドモータポンプ	日機装製
液ポンプ			インバータ搭載	
	型式		KQ55D-TO	
	電動機	呼称出力	0.4kW	
		定格電流	3. 0A	
凝縮器	種類		シェルアンドチューブ式	潮冷熱製
	伝熱管	種類	ローフィンチューブ	
		材質	アルミブラス	
		有効長 / 本数	1080mm / 44本	4本は過冷却用
		伝熱面積	6. $1m^2$	
膨張弁	種類		電子膨張弁	アルコ製
蒸発器	種類		プレート式	アルファラバル製
	型式		СВ30-70Н-F	
	プレート	材質	SUS316	
		伝熱面積	2. $0m^2$	
安全装置			高低圧圧力スイッチ	
			油圧保護スイッチ	
			凍結防止温度センサ	
			圧縮機保護装置	
			オイルサンプヒータ	
			溶栓	
			冷媒液レベルスイッチ	

表 5.2.3 試験用試作機の仕様表

図 5.2.2 試験用試作機

図 5.2.3 試験用試作機の系統図

試作機は、各手動バルブの切り替えにより、従来(圧縮機)サイクルと冷媒液のポン プ循環冷凍サイクルの両方の運転がおこなえるように設計をおこなった。各サイクル における手動バルブの状態を表 5.2.4 に示し、従来(圧縮機)サイクルの冷媒の流れを 図 5.2.4 に、冷媒液のポンプ循環冷凍サイクルの冷媒の流れを図 5.2.5 に示す。冷媒 液ポンプは、モータ部分とポンプ部分が一体化した完全無漏洩構造のキャンドポンプ を採用し、凝縮器には、器内の伝熱管の一部が冷媒液に浸っていることを確認できる ようにレベルゲージを装備した。

図 5.2.4 従来(圧縮機)サイクルの冷媒の流れ

図 5.2.5 冷媒液のポンプ循環冷凍サイクルの冷媒の流れ

壬勳		運転モード		
テ動 バルブ	設置個所	従来(圧縮機) サイクル	冷媒液のポンプ 循環冷凍サイクル	
VC1	蒸発器出口(圧縮機サイクル)	開	閉	
VC2	圧縮機吸込	開	閉	
VC3	圧縮機吐出	開	閉	
VC4	凝縮器出口(圧縮機サイクル)	開	閉	
VP1	冷媒液ポンプ吸込	閉	開	
VP2	冷媒液ポンプ吐出1	開	開	
VP3	冷媒液ポンプ吐出2	閉	開	
VP4	冷媒液ポンプリバース	開	開	
VP5	冷媒液ポンプバイパス	閉	閉	
VP6	凝縮器入口1	閉	閉	
VP7	蒸発器出口(冷媒液のポンプ循環冷凍サイクル)		 開	
VP8	凝縮器入口2	閉	開	

表 5.2.4 各サイクルにおけるバルブの開閉状態

5.2.3 冷媒液のポンプ循環冷凍サイクルの性能評価試験

(1) 試験設備

冷媒液のポンプ循環冷凍サイクルの試験設備の系統図を図 5.2.6、全体図を図 5.2.7、 試験設備の構成要素を表 5.2.5 に示す。また、計測に使用した機器を表 5.2.6 に示す。

図 5.2.6 試験設備の系統図

番号	名称	機能
1	チラーユニット	試験用試作機
2	ヒータユニット	試験用試作機の蒸発器へ冷水(負荷)供給源
		およびバッファタンク
		容量: 300L
		電気ヒータ容量: 20k₩
3	水冷式	試験用試作機への冷却水供給源
	ブラインチラーユニット	チラー水が清水の場合…冷却能力:約40kW
		チラー水がブラインの場合…冷却能力:約25kW
4	ブラインタンク	バッファタンク
		容量: 500L
5	クーリングタワー	試験用試作機とブラインチラーへの冷却水供給源

表 5.2.5 試験設備の構成要素

①の試験用試作機の蒸発器側のチラー水ラインに②ヒータユニットを接続し、蒸発器へ一定の温度の水を負荷として供給する。①の試験用試作機の凝縮器の冷却水ラインには、バッファタンクとして、④のブラインタンクを装備し、ブラインタンク内の水温を、③のブラインチラーユニットにより温度制御し、一定温度のブラインを①の試験用試作機の凝縮器へ供給する。それぞれの流量調整は、配管ラインにある循環ポンプの回転数をインバータ制御しておこなう。

図 5.2.7 試験設備の全体図

記号 測定項目 種 類 メーカ 型式 圧縮機吸込ガス圧力 圧力センサ バルコム VPRT ps1 圧縮機吸込ガス温度 K型熱電対 ts1 _ 圧縮機吐出ガス圧力 圧力センサ バルコム pd1 VPRT td1 圧縮機吐出ガス温度 K型熱電対 _ 圧縮機周波数 インバータ 富士電機 f1 FRN3. 7G1S-4J P1 圧縮機入力電力=消費電力 インバータ 富士電機 FRN3. 7G1S-4J 凝縮器液出口温度 K型熱電対 tr1 バルコム 冷媒液ポンプ吸込液圧力 圧力センサ VPRT ps2 冷媒液ポンプ吸込液温度 K型熱電対 ts2 圧力センサ バルコム 冷媒液ポンプ吐出液圧力 VPRT pd2 td2 冷媒液ポンプ吐出液温度 K型熱電対 _ _ インバータ f2 冷媒液ポンプ周波数 安川電機 CIMR-AA2A0006FAA Ρ2 冷媒液ポンプ入力電力=消費電力 インバータ 安川電機 CIMR-AA2A0006FAA 蒸発器冷媒 入口温度 tr2 K型熱電対 蒸発器出口ガス圧力 圧力センサ バルコム pr3 VPRT 蒸発器出口ガス温度 K型熱電対 _ _ tr3 凝縮器入口ガス圧力 圧力センサ バルコム VPRT pr4 tr4 凝縮器入口ガス温度 K型熱電対 蒸発器チラー水入口温度 Pt100 東邦電子 KS3 tc1 tc2蒸発器チラー水出口温度 Pt100 東邦電子 KS3 蒸発器チラー水流量 電磁流量計 qvc 東京計装 EGS 低温凝縮器冷却水入口温度 tw1 Pt100 東邦電子 KS3 tw2 低温凝縮器冷却水出口温度 Pt100 東邦電子 KS3 低温凝縮器冷却水入口圧力 圧力センサ バルコム pw1 VPRT 低温凝縮器冷却水出口圧力 圧力センサ バルコム VPRT pw2 凝縮器冷却水流量 電磁流量計 アズビル MGG11D qvw

表 5.2.6 計測器一覧

(2) 試験結果と評価

各運転サイクルの設計条件と測定結果を表 5.2.7 に示す。冷媒液のポンプ循環冷凍 サイクルについては、冷却水入口温度を設計条件である -5℃ から運転を開始し、冷 却水量を固定したまま温度を上げていき、運転確認および限界を探る運転をおこなっ た(測定値ロ~ニ)。従来サイクルについては、試験機に海水用凝縮器を搭載してい ないため、冷却水流量を冷媒液のポンプ循環冷凍サイクルと同様とし、冷却水温度を 上げていくことで疑似的に設計条件を再現した(測定値イ)。また、測定結果から描 ける冷凍サイクルを、p-h 線図上に示す(図 5.2.8)。

表 5.2.7 測定結果

			設計条件 測定値							
	項目	記号	単位	従来 サイクル	冷媒液の ポンプ 循環 サイクル	従来 サイクル	冷	媒液のポン 貴冷凍サイク	プ フ ル	備考
				А	В	イ	П	ハ		
_	冷却水	-	-	清水			ブライン			
器水	入口温度	tw1	°C	32.0	-5.0	33.7	-5.0	0.5	2.0	
海海	出口温度	tw2	°C	35.4	-3.5	35.6	-2.8	2.2	3.4	
~	冷却水量	qvw	m^3/h	4.24	8.46	8.39	8.39	8.39	8.39	
	凝縮圧力	pk	MPa (abs)	1.82	0.66	1.82	0.65	0.71	0.72	
	凝縮温度	tk	°C	40.0	3.0	39.8	2.5	5.3	5.6	
	蒸発圧力	ро	MPa (abs)	0.70	0.70	0.69	0.69	0.74	0.74	
	蒸発温度	to	°C	5.0	5.0	3.9	4.5	6.6	6.6	
	過冷却度	SC	K	1.0	1.0	3.9	1.8	1.6	1.8	式(4.2.3)
	過熱度	SH	K	8.0	0.5	8.8	0.4	0.4	7.4	式(4.2.5)
	圧縮機吸込 ガス圧力	ps1	MPa (abs)	0.70	-	0.69	-	-	-	=蒸発圧力
	圧縮機吸込 ガス温度	ts1	°C	13.0	-	12.6	-	-	-	
	圧縮機吐出 ガス圧力	pd1	MPa (abs)	1.82	-	1.82	-	-	-	=凝縮圧力
	圧縮機吐出 ガス温度	td1	°C	60.4	-	58.6	-	-	-	
媒側	凝縮器出口 液温度	tr1	°C	39.0	2.0	35.7	1.6	4.7	4.9	
£	冷媒液ポンプ 吸込液圧力	ps2	MPa (abs)	-	0.67	-	0.68	0.74	0.75	
	冷媒液ポンプ 吸込液温度	ts2	°C	-	2.0	-	1.7	4.7	4.8	
	冷媒液ポンプ 吐出液圧力	pd2	MPa (abs)	-	1.05	-	1.02	1.07	1.08	
	冷媒液ポンプ 吐出液温度	td2	°C	-	2.0	-	2.9	6.0	6.2	
	蒸発器出口 ガス圧力	pr3	MPa (abs)	-	0.70	-	0.69	0.74	0.74	=蒸発圧力
	蒸発器出口 ガス温度	tr3	°C	13.0	5.5	13.2	4.9	6.6	6.6	
	凝縮器入口 ガス圧力	pr4	MPa (abs)	-	0.66	-	0.65	0.71	0.72	=凝縮圧力
	凝縮器入口 ガス温度	tr4	°C	-	4.7	-	3.5	6.1	13.5	
	周波数	f	Hz	60.0	90.0	60.0	90.0	90.0	90.0	
	消費電力	Р	kW	3.32	0.36	3.26	0.41	0.40	0.39	
	成績係数	COP	-	3.8	34.7	3.9	41.2	32.0	27.2	式(4.2.7)
	チラー水	-	-			清	水			
部が	入口温度	tc1	°C	15.0	15.0	15.0	15.0	15.0	15.1	
蒸 が - 2	出口温度	tc2	°C	10.0	10.0	9.9	8.3	9.9	10.9	
ine H	チラー水量	qvc	m³/h	2.15	2.15	2.16	2.17	2.16	2.17	
	冷却能力	Φo	kW	12.5	12.5	12.8	16.9	12.8	10.6	式(4.2.9)

図 5.2.8 冷媒液のポンプ循環冷凍サイクルの測定結果

表中の冷却能力 Φo [kW] は、チラー水側で計算した交換熱量であり式(4.2.9)で求められる。

冷媒液のポンプ循環冷凍サイクルでは冷媒液ポンプの吸込、吐出のエンタルピ差が わずかであるため、読取り値から動力を算出することは困難である。そのため、圧縮 機、冷媒液ポンプの動力は、それぞれの電動機の入力電力の測定値とし、式(4.2.7) を用いて成績係数を算出した。

測定結果より、横軸に冷却水入口温度、縦軸に冷却能力、消費電力、成績係数をとったグラフをそれぞれ図 5.2.9~図 5.2.11 に示す。

図 5.2.9 冷却水温度と冷却能力の関係

図 5.2.10 冷却水温度と消費動力の関係

図 5.2.11 冷却水温度と成績係数の関係

設計条件の運転において、冷媒液のポンプ循環冷凍サイクルの冷却能力は従来サイ クルの約 1.3 倍となった。これは各サイクルで共通の蒸発器を使用しているため、図 5.2.1 で示した通り、冷媒液のポンプ循環冷凍サイクルにおける冷却能力増加分が測 定結果に現れたと考えられる。動力は従来比で約 87% 削減されたが、いずれの測定 値も設計条件よりわずかに大きくなった。これは設計条件の動力は冷媒液ポンプの軸 動力を示しているのに対し、測定値は電動機の入力を示しているためであり、電動機 の効率が加味される分、わずかに大きくなる。冷媒液ポンプの動力を試算する場合は、 軸動力にこの効率分を補正する必要がある。装置の効率を表す成績係数 COP は、設計 条件(測定値ロ)で従来比の約 10.5 倍まで向上した。

測定値ニ(冷却水入口温度 2.0℃)では、冷却能力が設計条件の冷却能力を下回った。これは、測定結果より、過熱度が増加していることから、膨張弁による過熱度制御(設定値 0.5K)が調整範囲を超えて、冷媒循環量が不足したことにより、冷却能力が低下したと考えられる。よって、測定値ニ(冷却水入口温度 0.5℃)が冷媒液のポンプ循環冷凍サイクルの運転限界である。

5.2.4 冷媒液のポンプ循環冷凍サイクルのまとめ

試験用空調装置の試作機として、チラーユニットを製作し、冷媒液のポンプ循環サ イクルでの運転状態の確認、および従来サイクルに対する動力の削減率を検証した。 低温のブラインを利用することで、凝縮温度と蒸発温度が従来サイクルと逆転した冷 媒液のポンプ循環冷凍サイクルを実現し、理想的な運転となった。冷却能力は、電子 膨張弁の過熱度制御により、冷媒循環量は調整され、設計条件の冷却能力を満足する ことができた。冷却水温度が-5℃の場合、冷却能力は 1.3 倍、冷媒循環のための動 力は87%の削減、装置の効率を表す成績係数 COP は 10.5 倍となった。

5.3 要素技術を組み合わせた空調装置の試作

これまで試作検討してきた、冷熱回収熱交換器、低温凝縮器、低圧縮比冷凍サイクル、 冷媒液のポンプ循環冷凍サイクル、冷媒過冷却器の、これらの要素技術を組み合わせた 空調装置全体の設計・試作を行った後、試験運転を行う。試験運転の結果、必要な場合 は個々の要素技術に戻っての修正を行い、全体としての所要機能が発揮されるのか、シ ステム全体としての性能確認を行う。試作機が空調装置として成り立つか、従来空調装 置と比較してのエネルギー効率の向上を検証する。

(1) 記号と添字

本節で記載している記号、および添字について以下に説明する。

	記号一覧					
СОР	成績係数	_	qv	体積流量	m³/h	
CR	圧縮比	_	SC	過冷却度	К	
f	周波数	Hz	SH	過熱度	К	
Р	動力	kW	t	温度	°C	
р	圧力	MPa(abs)	tk	凝縮温度	°C	
pk	凝縮圧力	MPa(abs)	to	蒸発温度	°C	
ро	蒸発圧力	MPa(abs)	Φ0	冷却能力	kW	
qmr	冷媒循環量	kg/s	Φk	凝縮熱量	kW	
			Φk	ブラインタンク内温度	°C	

m*/..

沃空

L ~01					
С	冷水	S	吸込側		
d	吐出側	W	冷却水		
r	冷媒	n	窒素		

5.3.1 要素技術を組み合わせた空調装置の設計

(1) 要素技術を組み合わせた空調装置の狙い

これまで空調装置の動力削減を目的とし、冷熱回収熱交換器により得られる低温の 冷熱源を利用した、低温凝縮器による低圧縮比冷凍サイクルと冷媒液のポンプ循環冷 凍サイクル、冷媒過冷却器による高過冷却冷凍サイクルを検討してきた。

得られる低 温の冷熱量により、これらの冷凍サイクルを切り替えて運転することで、無駄なく冷 熱量の利用が可能な空調装置を設計する。

(2) 要素技術を組み合わせた空調装置に必要な機能

各サイクルの動力削減効果は、低圧縮比冷凍サイクル75%、冷媒液のポンプ循環冷凍 サイクル87%、高過冷却冷凍サイクル30%であった。今回は、その中でも、動力削減 効果の高い低圧縮比冷凍サイクルと冷媒液のポンプ循環冷凍サイクルを組み合わせた 空調装置の設計をおこなう。これまでの検証結果から、低圧縮比冷凍サイクルの場合は、 圧縮機のインバータによる回転数制御(4.2.1節を参照)、冷媒液のポンプ循環冷凍サ イクルの場合は、冷媒液ポンプへの十分な吸込ヘッドの確保と圧力調整弁(5.2.1節を 参照)が必要な機能であった。今回は、それらの機能に加え、得られる低温の冷熱量に より、最適なサイクルへスムーズな切り替えをおこない、安定した運転ができる制御方 法が必要な機能となる。

5.3.2 要素技術を組み合わせた空調装置の試作

(1) 設計条件

試験用空調装置の試作機には、蒸発器の負荷側の条件を安定させて、正確なデータが 計測できるように、チラーユニットを採用した。試作機の設計条件を表 5.3.2 に示す。 評価基準となる従来サイクルの条件として、凝縮器の冷却水は清水 32℃、凝縮温度 40℃ とし、船舶の一般的な条件とした。冷却能力については、船舶の小型のパッケー ジ型エアコンと同容量の 10kW 程度とした。低温凝縮器の設計(4.4.1 節を参照)は、 液ポンプ循環冷凍サイクルの条件を基準とし、冷却水にブライン-5℃を使用し、凝縮温 度が 3℃ になるように計画をおこなった。今回使用したブラインの物性値を表 5.3.1 に示す。

項目	値	備考
名称	ナイブラインZ1	
主成分	エチレングリコール系	
濃度	46wt%	
凍結温度	-20°C	
密度	$1060 \mathrm{kg/m}^3$	46wt%,-5℃の値
比熱	3.52kJ/(kg • K)	46wt%,-5℃の値
熱伝導率	0.45W/(m • K)	46wt%,-5℃の値
粘性率	0.007Pa • s	46wt%,-5℃の値

表 5.3.1 ブラインの物性値

機器	要目	記号	単位	A. 従来 サイクル	B. 冷媒液のポンプ 循環冷凍サイクル
共通	冷媒	_	-	R404A	R404A
圧縮機	蒸発温度	to	°C	5	_
	蒸発圧力	ро	MPa(abs)	0.704	_
	凝縮温度	tk	°C	40	_
	凝縮圧力	pk	MPa(abs)	1.82	-
	過熱度	SH	K	8	-
	過冷却度	SC	K	1	-
	周波数	f	Hz	60	-
	動力	Р	kW	3.32	-
	成績係数	COP	-	3.80	-
冷媒	蒸発温度	to	°C	-	5
液ポンプ	蒸発圧力	ро	MPa(abs)	_	0.704
	凝縮温度	tk	°C	_	3
	凝縮圧力	pk	MPa(abs)	_	0.662
	過熱度	SH	K	-	0.5
	過冷却度	SC	K	_	1
	周波数	f	Hz	-	90
	動力	Р	kW	_	0.36
	成績係数	COP	-	-	35.3
凝縮器	冷却水	-	-	清水	ブライン
	冷却水 入口温度	tw1	°C	32	-5
	冷却水 出口温度	tw2	°C	35.4	-3.4
	冷却水流量	qvw	m^3/h	4.24	7.90
	凝縮熱量 ^{※1}	$\Phi{ m k}$	kW	16.7	13.2
蒸発器	チラー水	-	-	清水	清水
	チラー水 入口温度	tc1	°C	15	15
	チラー水 出口温度	tc2	°C	10	10
	チラー水流量	qvc	m ³ /h	2.15	2.15
	冷却能力	Φo	kW	12.5	12.5

表 5.3.2 設計条件

※1. 凝縮熱量 Φk [kW] の設計条件は、必要凝縮熱量の 5% の余裕を含める

(2) 要素技術を組み合わせた空調装置の試作機

試験用試作機の仕様表を表 5.3.3 に、写真を図 5.3.1 に示す。また、試作機の 系統図を図 5.3.2 に示す。

項目			値	備考
本 体			チラーユニット	
外形寸法	外形寸法 幅 x 奥行き x 高さ		2180mm x 1530mm x 1980mm	
質量			約1150kg	
冷媒			R404A 20kg	
塗装色			7.5BG7/2	
電源			440V 60Hz 3Ph	
冷却能力			12.5kW	
圧縮機	種類		半密閉型レシプロ式	Bock製
			インバータ搭載	
	型式		HGX22e/125-4S	
	電動機	呼称出力	2.2kW	
		定格電流	6. 2A	
冷媒	種類		キャンドモータポンプ	日機装製
液ポンプ			インバータ搭載	
	型式		KQ55D-TO	
	電動機	呼称出力	0.4kW	
		定格電流	3. OA	
海水	種類		シェルアンドチューブ式	潮冷熱製
凝縮器	伝熱管	種類	ローフィンチューブ	
		材 質	アルミブラス	
		有効長 / 本数	1080mm / 20本	
		伝熱面積	3. 0m ²	
低温	種 類		シェルアンドチューブ式	潮冷熱製
凝縮器	伝熱管	種類	ローフィンチューブ	
		材 質	アルミブラス	
		有効長 / 本数	1080mm / 48本	4本は過冷却用
		伝熱面積	6.7m ²	
膨張弁	種類		圧縮機運転用 電子膨張弁	アルコ製
			冷媒液ポンプ運転用 電子膨張弁	アルコ製
蒸発器	種類		プレート式	アルファラバル製
	型式	1	CB30-70H-F	
	プレート	材質	SUS316	
		伝熱面積	2. 0m ²	
安全装置			高低圧圧力スイッチ,油圧保護スイ	ッチ
			圧縮機保護装置,オイルサンプヒー	タ,安全弁
			凍結防止温度センサ、冷媒液レベル	レスイッチ
			過冷却アラーム	

表 5.3.3 試験用試作機の仕様表

図 5.3.1 試験用試作機

図 5.3.2 試験用試作機の系統図

試作機は、電磁弁の切り替えにより、低圧縮比冷凍サイクルと冷媒液のポンプ循環 冷凍サイクルの自動切り替え運転がおこなえるように設計をおこなった。各サイクル における電磁弁の状態は、次の5.3.3節で述べる。電子膨張弁は圧縮機と冷媒液ポン プで適正過熱度が異なるため、圧縮機用の膨張弁と冷媒液ポンプ用の膨張弁をそれぞ れ装備した。また、低負荷時も運転できるように、容量調整弁も新たに追加した。尚、 本試作機は、5.4節で述べる冷熱切り替え運転試験装置と共通のものであり、図中の 海水凝縮器はその時に使用する。

5.3.3 要素技術を組み合わせた空調装置の性能評価試験

(1) 試験設備

要素技術を組み合わせた空調装置の試験設備の系統図を図 5.3.3、全体図を図 5.3.4、 試験設備の構成要素を表 5.3.4に示す。また、計測に使用した機器を表 5.3.5 に示す。 性能評価試験では他の試験同様、冷熱回収熱交換器による低温冷熱を③水冷式ブライ ンチラーユニットで代用した。

図 5.3.3 試験設備の系統図

図 5.3.4 試験設備の全体図

番号	名 称	機能
1	チラーユニット	試験用試作機
2	ヒータユニット	試験用試作機の蒸発器へ冷水(負荷)供給源
		およびバッファタンク
		容量: 300L
		電気ヒータ容量: 20k₩
3	水冷式	試験用試作機への冷却水供給源
	ブラインチラーユニット	チラー水が清水の場合…冷却能力:約40kW
		チラー水がブラインの場合…冷却能力:約25kW
4	ブラインタンク	バッファタンク
		容量: 500L
5	クーリングタワー	試験用試作機とブラインチラーへの冷却水供給源

表 5.3.4 試験設備の構成要素

①の試験用試作機の蒸発器側のチラー水ラインに②ヒータユニットを接続し、蒸発器へ一定の温度の水を負荷として供給する。①の試験用試作機の低温凝縮器の冷却水ラインには、バッファタンクとして、④のブラインタンクを装備し、ブラインタンク内の水温を、③のブラインチラーユニットにより一定の温度に制御する。④のブラインタンクから①の試験用試作機の低温凝縮器へ冷却水を供給する。冷却水ラインには三方弁を装備し、低温凝縮器の冷却水入口の温度制御をおこなう。水ライン、冷却水ラインの流量調整は、配管ラインにある循環ポンプの回転数をインバータ制御しておこなう。

記号	測定項目	種類	メーカ	型式
ps1	圧縮機吸込ガス圧力	圧力センサ	バルコム	VPRT
ts1	圧縮機吸込ガス温度	K型熱電対	-	-
pd1	圧縮機吐出ガス圧力	圧力センサ	バルコム	VPRT
td1	圧縮機吐出ガス温度	K型熱電対	-	-
f1	圧縮機周波数	インバータ	富士電機	FRN3.7G1S-4J
P1	圧縮機入力電力=消費電力	インバータ	富士電機	FRN3.7G1S-4J
tr1	低温凝縮器液出口温度	K型熱電対	-	_
tr5	海水凝縮器液出口温度	K型熱電対	-	-
ps2	冷媒液ポンプ吸込液圧力	圧力センサ	バルコム	VPRT
ts2	冷媒液ポンプ吸込液温度	K型熱電対	-	-
pd2	冷媒液ポンプ吐出液圧力	圧力センサ	バルコム	VPRT
td2	冷媒液ポンプ吐出液温度	K型熱電対	-	_
f2	冷媒液ポンプ周波数	インバータ	安川電機	CIMR-AA2A0006FAA
P2	冷媒液ポンプ入力電力=消費電力	インバータ	安川電機	CIMR-AA2A0006FAA
tr2	蒸発器冷媒 入口温度	K型熱電対	-	-
pr3	蒸発器出口ガス圧力	圧力センサ	バルコム	VPRT
tr3	蒸発器出口ガス温度	K型熱電対	-	-
pr4	低温凝縮器入口ガス圧力	圧力センサ	バルコム	VPRT
tr4	低温凝縮器入口ガス温度	K型熱電対	-	-
tc1	蒸発器チラー水入口温度	Pt100	東邦電子	KS3
tc2	蒸発器チラー水出口温度	Pt100	東邦電子	KS3
qvc	蒸発器チラー水流量	電磁流量計	東京計装	EGS
tb3	ブラインタンク内温度	Pt100	東邦電子	KS3
tw1	低温凝縮器冷却水入口温度	Pt100	東邦電子	KS3
tw2	低温凝縮器冷却水出口温度	Pt100	東邦電子	KS3
pw1	低温凝縮器冷却水入口圧力	圧力センサ	バルコム	VPRQ
pw2	低温凝縮器冷却水出口圧力	圧力センサ	バルコム	VPRQ
qvw1	低温凝縮器冷却水流量	電磁流量計	アズビル	MGG11D
tw3	海水凝縮器冷却水入口温度	Pt100	東邦電子	KS3
tw4	海水凝縮器冷却水出口温度	Pt100	東邦電子	KS3
qvw2	海水凝縮器冷却水流量	電磁流量計	東京計装	EGS

表 5.3.5 計測器一覧

(2) 低圧縮比(圧縮機)冷凍サイクルと冷媒液のポンプ循環冷凍サイクルの運転切り替 え条件

5.2節の冷媒液のポンプ循環冷凍サイクルの試験結果より、冷媒液ポンプを正常に運転するためには、低温凝縮器の冷却水入口温度が一定温度以下であることが条件となる。 よって、冷却水温度を運転切り替えの条件とし、圧縮機運転中に冷却水温度が-3℃以下になった場合、冷媒液ポンプ運転に切り替え、0℃以上になった場合、圧縮機運転に切り替える。ただし、運転起動時は-3℃以下の場合のみ、冷媒液ポンプ運転となり、-3℃より高い温度では圧縮機運転となる。試作機の運転切り替えの温度条件を図5.3.5に示す。制御に使用する冷却水温度はブラインタンク内温度 tb3 を使用する。

(3) 低圧縮比(圧縮機)冷凍サイクルの圧縮比の確保

4.2節の低圧縮比冷凍サイクルの試験結果より、圧縮比が小さくなりすぎると冷媒循 環量が不足し、冷却能力が低下する。そのため、圧縮比を適正に保つための制御が必要 となる。今回の試験機では、冷却水配管に三方弁を装備し、低温凝縮器の冷却水入口温 度 tw1 の温度制御をおこなった。制御条件としては、低温凝縮器の冷却水ラインにある ブラインタンク内温度 tb3 が 10℃以下かつ低圧縮比運転をおこなう場合、三方弁は低 温凝縮器の冷却水入口温度 tw1 を 10℃となるよう制御する。ブラインタンク内温度 tb3 が 10℃より高い、もしくは冷媒液ポンプ運転中は三方弁による制御はおこなわない。 図 5.3.6 に三方弁制御の条件を示す。

図 5.3.6 三方弁制御の条件

また、圧縮機起動時は一定時間周波数を上げて(試験機の設定値は 60Hz、30 秒)運転した後、インバータによる回転数制御を始めることとする。これは起動時の圧縮比を確保するだけでなく、運転中に圧縮機から持ち出される潤滑用の冷凍機油の回収にも有効である。

(4) 冷媒液ポンプの起動方法

冷媒液ポンプを正常に起動させるため、冷媒液ポンプの吸込側の冷媒が 100%液の状態でなければならず、十分な過冷却度を取る必要がある。低温凝縮器は伝熱管の一部を 冷媒液に浸して過冷却を取る構造としているが、圧力変化に対して温度変化は応答が遅 れるため、冷媒が十分過冷却されるまでに時間がかかる。これを解決するため、冷媒液 ポンプの起動方法は圧縮機冷媒と冷媒液ポンプの同時運転とする。すなわち、圧縮機に より高圧の液冷媒を冷媒液ポンプの吸込側に送り込むことにより過冷却度を確保する。 ただし、冷媒液ポンプを運転する冷却水温度域(-3°C)のインバータによる回転数制御 では、圧縮機は十分な圧縮比が取れず、冷媒循環量が不足してしまうため、同時運転時 は圧縮機の周波数を強制的に60Hz運転とする。これらの起動方法を図 5.3.7 に示す。 圧縮機の強制 60Hz運転は、低温凝縮器の冷却水入口温度 tw1 がブラインタンク内温度 tb3 と同じ設定温度まで冷却されたとき開始し、冷媒液ポンプの運転を開始する過冷却 度は、0.5K とする。

図 5.3.7 冷媒液ポンプの起動方法

(5) 低圧縮比(圧縮機)冷凍サイクルと冷媒液のポンプ循環冷凍サイクルの冷媒の流れ 各サイクルにおける電磁弁の状態を表 5.3.6 に示し、低圧縮比冷凍サイクルの系統内 の冷媒の流れを図 5.3.8、冷媒液のポンプ循環冷凍サイクルの系統内の流れを図 5.3.10 に示す。電磁弁 SV2、SV3、SV4 については冷熱の切り替え運転で使用するため、5.4節 で説明する。電磁弁 SV9 については、次項の容量制御方法で説明する。

		運転モード	
電磁弁	設置個所	低圧縮比 冷凍サイクル	冷媒液のポンプ 循環冷凍サイクル
SV1	圧縮機吸込	開	閉
SV2	海水凝縮器入口	閉	閉
SV3	均圧管	閉	閉
SV4	海水凝縮器出口	閉	閉
SV5	冷媒液ポンプ吸込	開	開
SV6	冷媒液ポンプ吐出	開	開
SV7	低温凝縮器入口	閉	開
SV8	油戻り管	開	閉
SV9	容量調整弁入口	<mark>開</mark> or 閉	閉

表 5.3.6 各運転状態の電磁弁の状態

図 5.3.8 低圧縮比冷凍サイクルの冷媒の流れ

図 5.3.9 冷媒液のポンプ循環冷凍サイクルの冷媒の流れ

(6) 容量制御方法

各低負荷時の容量制御については、圧縮機はインバータによる回転数制御、冷媒液ポ ンプは電子膨張弁の過熱度制御により、それぞれ冷媒循環量が制御される。ただし、圧 縮機は起動時に一定時間強制的に周波数を上げて運転する制御としているため、一時的 に冷却能力が増大する。低負荷時に能力が過大となると、蒸発器内が凍結する恐れがあ るため、低負荷時の強制運転中のみ電磁弁 SV9を開け、容量調整弁によって能力の過大 を防止する。

(7) 試験結果と評価

試験装置を運転しながら、ブラインチラーユニットでブラインタンク内温度 tb3 を冷 媒液のポンプ循環冷凍サイクルの設計条件である -5℃ まで冷却した後、ブラインチラ ーユニットを停止し、ブラインタンク内温度 tb3 を試験装置の負荷で昇温させていった。 冷却水温度以外は冷媒液のポンプ循環冷凍サイクルの条件とし、冷却水温度の変化によ る運転状態の遷移を確認した。

横軸を時間変化とし、縦軸にブラインタンク内温度 tb3 の値と並べて、圧縮機の動力、 冷媒液ポンプの動力をとったグラフを図 5.3.10 に示す。

図 5.3.10 時間経過と冷却水温度変化に伴う動力の変化

図中に示す設計条件は従来サイクルにおける設計条件の圧縮機動力である。運転状態 から、圧縮機で起動後、ブラインタンク内温度(冷却水温度)の低下により、正常に冷媒 液のポンプ循環冷凍サイクルに移行し、ブラインタンク内温度(冷却水温度)の昇温によ り再び圧縮機サイクルに移行していることが確認できる。また、各運転サイクルの定常 状態での動力の削減率は従来比で、圧縮機運転で約 55%、冷媒液ポンプ運転で約 87%で あった。さらに冷媒液のポンプ循環冷凍サイクルへの移行前に一時的な圧縮機動力の低 減が確認できるが、これは冷却水温度 tw1 の低下により、一時的に圧縮比が低下し、冷 媒循環量の低下したためである。

次に、冷却能力を並べたものを図 5.3.11 に示す。

図 5.3.11 時間経過と冷却水温度変化に伴う冷却能力の変化

図中に示す設計条件は、試験装置の設計条件における冷却能力である。各運転サイク ルにおいて定常状態では設計条件の冷却能力を満足していることが確認できる。圧縮機 の起動後 250 秒ほど冷却能力が増減しているが、これはインバータによる回転数制御が 安定するまでの時間である。図 5.3.10 で冷媒液ポンプの起動前に圧縮機の動力が低減 していたが、同じように冷却能力についても低下がみられる。これは同じく圧縮比の低 下により、冷媒循環量が低下しているためである。

次に成績係数を並べたものを図 5.3.12 に示す。

図 5.3.12 時間経過と冷却水温度変化に伴う成績係数の変化

図中に示す設計条件は、従来サイクルにおける設計条件の成績係数である。各運転サ イクルの定常状態での成績係数は従来比で、圧縮機運転で約2.6倍、冷媒液ポンプ運転 で約7.9倍となった。各運転開始時に一時的な低下はみられるが、全体を通して設計条 件の成績係数よりも向上していることが確認できる。

次に圧縮機の圧縮比を並べたものを図 5.3.13 に示す。

図 5.3.13 時間経過と冷却水温度変化に伴う圧縮比の変化

冷媒液ポンプの起動前に圧縮比の低下があるが、それ以外については、ブラインタン ク内温度(冷却水温度)にかかわらず、ほぼ一定の圧縮比を保持していることが確認でき る。これは低温凝縮器の冷却水入口温度 tw1 を三方弁により一定の温度になるように制 御をしているためである。

次に、低温凝縮器の冷却水入口温度 tw1 を並べたもの図 5.3.14 に示す。

図 5.3.14 時間経過と冷却水温度変化に伴う凝縮器冷却水入口温度の変化

低温凝縮器の冷却水入口温度 tw1 は、三方弁により一定の温度に制御されているこ とが確認できるが、冷媒液ポンプ運転前に冷却水入口温度が低下している。これはブ ラインタンク内温度 tb3 が設定温度である-3℃まで低下した場合、三方弁による温度 制御を終了するためである。三方弁の制御が終了してから低温凝縮器入口の冷却水温 度が低下するまで一定の時間がかかっており、これが圧縮比の低下に伴う冷媒循環量 の低下を引き起こす原因である。ブラインタンクと低温凝縮器との位置が離れるなど すると、この時間は長くなるため、空調システム全体の設計をおこなう場合には注意 が必要である。これに伴う冷却能力の低下の影響が、空調装置として無視できない場 合は、圧縮機の周波数を強制的に上げて圧縮比を維持するなどの対策が必要である。

次に冷媒液ポンプ吸込側の過冷却度、圧縮機の運転周波数を並べたものをそれぞれ図 5.3.15、図 5.3.16 に示す。

図 5.3.15 時間経過と冷媒液ポンプ吸込側過冷却度の変化

図 5.3.16 時間経過と圧縮機運転周波数の変化

冷媒液ポンプ起動前には、圧縮機の圧縮比が低下することで、冷媒循環量が不足し、 過冷却度が低下してしまうため、冷媒液ポンプの起動前には、圧縮機の周波数を強制的 に上げて冷媒循環量と過冷却度を確保してから、冷媒液ポンプを起動する方法とした。 結果的に、冷媒液ポンプの起動時には十分な過冷却度がとれていることが確認できる。

5.3.4 要素技術を組み合わせた空調装置と冷熱回収熱交換器の同時運転

これまで要素技術を組み合わせた空調装置の動作確認、性能評価試験における低温冷 熱源は、試験設備のブラインチラーで代用してきた。ここでは、5.1.4節で試作した冷 熱回収熱交換器を使用して、要素技術を組み合わせた空調装置の運転をおこない、シス テム全体としての性能確認をおこなう。

(1) 各機器の試作機

冷熱回収熱交換器および要素技術を組み合わせた空調装置の試作機についてはそれ ぞれの試験で用いたものと同じものを使用する。冷熱回収熱交換器の試作機は、5.1.4 節を参照、空調装置の試作機は、5.3.2節を参照とする。

(2) 試験設備

要素技術を組み合わせた空調装置と冷熱回収熱交換器の同時運転の試験設備の系統 図を図 5.3.17 に示す。また、試験設備の構成要素は表 5.3.7、計測に使用した機器に ついては、空調装置側は表 5.3.5、冷熱回収熱交換器側は表 5.3.8 に示す。

図 5.3.17 試験設備の系統図

表 5.3.7 試験設備の構成要素

番号	名 称	機能
1	チラーユニット	試験用試作機
2	ヒータユニット	試験用試作機の蒸発器へ冷水(負荷)供給源
		およびバッファタンク
		容量: 300L
		電気ヒータ容量: 20kW
3	水冷式	試験用試作機への冷却水供給源
	ブラインチラーユニット	チラー水が清水の場合…冷却能力:約40kW
		チラー水がブラインの場合…冷却能力:約25kW
4	ブラインタンク	バッファタンク
		容量: 500L
5	クーリングタワー	試験用試作機とブラインチラーへの冷却水供給源
6	冷熱回収熱交換器	供試品
\overline{O}	液化窒素供給装置	冷熱回収熱交換器に液化窒素を供給する

記号	測定項目	種類	メーカ	型式
tn1	窒素の入口温度	Pt100	岡崎製作所	R96
pn1	窒素の入口圧力	デジタル圧力計	長野計器	GC61
tn2	窒素の出口温度	Pt100	岡崎製作所	R96
pn2	窒素の出口圧力	デジタル圧力計	長野計器	GC61
qvn	窒素の流量	マスフローメータ	アズビル	CML050
tw5	冷熱回収器冷水入口温度	Pt100	東邦電子	KS3
pw5	冷熱回収器冷水入口圧力	圧力センサ	バルコム	VPRQ
tw6	冷熱回収器冷水出口温度	Pt100	東邦電子	KS3
pw6	冷熱回収器冷水出口圧力	圧力センサ	バルコム	VPRQ
qvw3	冷熱回収器冷水流量	電磁流量計	アズビル	MGG11D

表 5.3.8 計測機器一覧

5.3.3節の試験系統(図 5.3.3)から、ブラインタンクのブラインチラーユニットの配 管ラインに冷熱回収熱交換器の冷水ラインを並列に接続して、ブラインチラーユニット と冷熱回収熱交換器を切り替えて利用できるようにした。低温凝縮器の冷却水量と冷熱 回収熱交換器の冷却水量の流量差を吸収するため、ブラインタンクはそのまま利用し、 冷熱回収器の冷却源は、単体試験同様に、液体窒素を使用した。

(3) 運転条件の検討

現状の設備、冷熱回収熱交換器において、液体窒素の供給時間は約70分が限界である。液体窒素供給中、つまり、冷熱回収中に試験用空調装置の運転をおこない、空調装置の運転モード切り替え(低圧縮比冷凍サイクル→冷媒液のポンプ循環冷凍サイクル→ 低圧縮比冷凍サイクル)が正常におこなわれているか確認するためには、低温凝縮器の 冷却水入口温度(ブライン温度)を-5℃まで冷却する必要がある。冷熱回収熱交換器と 低温凝縮器の設計条件を比較したものを表5.3.9に示す。ブラインの物性値は前節の表 5.3.1に示す。

項目		単位	冷熱回収	熱交換器	低温凝縮器	
			伝熱管側	シェル側	伝熱管側	シェル側
	流体		液体窒素	ブライン	ブライン	R404A
	圧力	MPa(abs)	0.4	-	-	0.66
運転条件	凝縮温度	°C	-	-	-	3
	流量	kg/h	150	3100	8970	270
	入口温度	°C	-182	-5	-5	-
	出口温度	°C	-20	-10	-3.5	-
	交換熱量	kW	15		13	. 2
内容積		m3	-	0.045	0.015	-

表 5.3.9 冷熱回収熱交換器と低温凝縮器の設計条件の比較

次に、低温凝縮器とブラインタンクと冷熱回収熱交換器のブラインの内容積と熱容量 を表 5.3.10 に示す。

項目	単位	低温凝縮器	ブラインタンク	冷熱回収熱交換器	合計
内容積	m3	0.015	0.5	0.045	0.56
熱容量	kJ∕℃	56.0	1865.6	167.9	2089.5

表 5.3.10 試験設備のブラインの熱容量

実際には、配管や機器部材の熱容量、侵入熱等も影響するため、10%の余裕率を乗じて、総熱容量は、約2300kJ/kg とする。

冷熱回収熱交換器側の条件は、設計条件とし、上記の総熱容量2300kJ/kgを用いて、 試験用空調装置の運転と冷熱回収の同時運転をおこなった場合の運転時間とブライン タンク内温度 tb3 の関係を図 5.3.18 に示す。運転開始温度は 0℃とし、空調装置の低 温凝縮器の交換熱量(凝縮熱量)は 13.2kW(設計条件)と 10kW の 2 パターンとする。

図 5.3.18 低温凝縮器の交換熱量における運転時間とブラインの温度変化

試験用空調装置を設計条件で運転する場合、現状の設備では、ブラインタンク内温度 が-5℃まで冷却できないため、試験用空調装置の交換熱量を 10kW まで下げた状態(空 調装置の負荷を下げた状態)で同時運転をおこなうこととする。

(4) 試験結果と評価

運転の手順として、まず、ブラインチラーユニットで冷却したブラインを冷却水として、試験用空調装置を運転する(予冷運転)。運転開始からブラインの温度が約0℃となったところでブラインチラーユニットの運転を終了し、冷却水の配管ラインを冷熱回収熱交換器側へ切り替える。その後、液体窒素の供給を開始し、冷熱回収熱交換器で、

ブラインと液体窒素の熱交換をおこない、冷熱回収したブラインを冷却水として、空調 装置の運転を継続する(同時運転)。液体窒素の供給が終了した後も、空調装置は継続 して運転をおこなう(昇温運転)。

冷熱回収熱交換器側の運転状態を図 5.3.19 に、低温凝縮器側の運転状態を図 5.3.20 に、各熱交換器の交換熱量を図 5.3.21 に示す。

図 5.3.19 冷熱回収熱交換器側の運転状態

図 5.3.20 低温凝縮器側の運転状態

図 5.3.21 低温凝縮器側の運転状態

まず、試験用空調装置は、低温凝縮器の冷却水(ブライン)温度が三方弁により 10℃ に制御された状態で圧縮機運転をおこない、その後、液体窒素供給後、徐々に、冷却水 (ブライン)温度が低下し、-3℃で冷媒液ポンプ運転に移行している。液体窒素供給終 了後も、冷媒液ポンプ運転を継続し、冷却水温度が 0℃まで上昇した後、再び圧縮機運 転に移行している。空調装置の運転切り替えおよび、制御については、5.3.3 を参照の こと。圧縮機運転中に、交換熱量が一時的に大きく増加しているのは、冷媒液ポンプ起 動前に三方弁の制御が終了し、ブライン温度が急激に低下している影響だと考えられる。 次に、ブラインタンク内の温度変化を図 5.3.22 に示す。

図 5.3.22 ブラインタンク内の温度変化

運転状態の変化により、冷熱回収熱交換器や低温凝縮器の交換熱量の増減があるため、 運転状態の変更直後にはタンク内の温度の変化がみられる。特に、冷媒液ポンプ運転前 の三方弁による温度制御終了に伴う、タンク内の温度上昇は、圧縮機から冷媒液ポンプ へ運転切り替えまでの時間が長くなるため、注意が必要である。

計算値(予想曲線)との比較では、運転状態の変更に伴う温度上昇や、計画値との交換 熱量のずれなどが影響するため、計算値よりもブラインの冷却、昇温ともにやや時間が かかったが、ほぼ予測通りの結果となった。この結果より、冷熱回収熱交換器を使用し、 空調装置全体として冷熱による切り替え運転が可能であることを確認した。また、冷熱 回収熱交換器、低温凝縮器の熱容量と交換熱量、タンクの熱容量から、運転切り替えに 必要な時間や昇温運転時間の見積もりが可能であることも確認できた。

5.3.5 要素技術を組み合わせた空調装置のまとめ

要素技術を組み合わせた空調装置として、得られる低温冷熱の温度によって圧縮機サ イクルと冷媒液のポンプ循環冷凍サイクルを切り替える試験用空調装置を試作して、運 転状態の確認をおこなった。ブラインチラーを使用した試験結果より、起動時や切り替 え時に一時的な冷却能力の低下や、効率の低下がみられたが、十分に許容できる範囲で あり、各サイクルへの切り替え運転は問題なくおこなうことができた。また、動力の削 減、エネルギー効率の向上も確認できた。さらに、冷熱回収熱交換器を使用した試験結 果より、タンクを使用し、各機器へのブライン流量差を吸収することで、ブラインチラ ーと同様に、問題のない切り替え運転をおこなうことができた。各機器の交換熱量とタ ンク容量から、ブラインの温度変化をある程度予測することができることを確認し、全 体設計のための知見を得ることができた。

5.4 冷熱の切り替え運転試験装置の試作

ハイブリッド空調装置として、LNG 燃料を使わない場合、或いは停泊中等における海水冷却の場合に凝縮器の冷却源をLNG 回収冷熱から海水に、或いは逆にスムーズに切り 替えるための配管系統、制御方法を明確にし、切り替え運転試験装置の設計・試作を行った後、評価試験を行う。評価試験の結果をもとに、冷熱の切り替え装置の設計技術を 確立する。

(1) 記号と添字

本節で記載している記号、および添字について以下に説明する。

		ロク	見		
СОР	成績係数	—	qv	体積流量	m³/h
CR	圧縮比	_	SC	過冷却度	К
f	周波数	Hz	SH	過熱度	К
h	エンタルピ	kJ/kg	t	温度	°C
Р	動力	kW	tk	凝縮温度	°C
р	圧力	MPa(abs)	to	蒸発温度	°C
pk	凝縮圧力	MPa(abs)	Φ0	冷却能力	kW
ро	蒸発圧力	MPa(abs)	Φk	凝縮熱量	kW
qmr	冷媒循環量	kg/s	tb	ブラインタンク内温度	°C

記号一覧

添字

С	冷水	S	吸込側
d	吐出側	W	冷却水
r	冷媒		

5.4.1 冷熱の切り替え運転試験装置の設計

(1) 冷熱の切り替え運転試験装置の狙い

ハイブリッド空調装置は、船舶でのLNG 燃料の運用状態により、回収される冷熱量 が不足、もしくは冷熱が得られない場合には、従来の船舶の一般的な冷却源である海 水冷却での運転に切り替えて、空調装置としての運転を維持することとしている。冷 却源の切り替えをスムーズにおこない、LNG 燃料の運用状態によらず安定した運転が 可能な空調装置を設計する。 (2) 冷熱の切り替え運転試験装置に必要な機能

これまで検討をおこなってきた低温冷熱利用時の低圧縮比冷凍サイクル、冷媒液ポン プ循環冷凍サイクルの機能に加え、海水と低温冷熱の2つの異なった冷却源による運転 を可能とするために、それぞれの冷却源用の凝縮器が必要となる。さらに、それらの凝 縮器を、LNG燃料の運用状況、空調装置の運転状態に合わせて、スムーズに切り替えを おこない、安定した運転のできる配管系統、制御方法が必要となる。

5.4.2 冷熱の切り替え運転試験装置の試作

(1) 設計条件

試験用空調装置の試作機は、要素技術を組み合わせた空調装置で製作した試作機(チ ラーユニット)と共通としたため、設計条件は要素技術を組み合わせた空調装置と同様 である。試験装置の設計条件は、5.3.2節の表 5.3.2を参照のこと。

(2) 試験用空調装置の試作機

試験用空調装置の試作機は、要素技術を組み合わせた空調装置で製作した試作機(チ ラーユニット)と共通としたため、試作機の仕様と系統図は、5.3.2節の表 5.3.3 と 図 5.3.2 を参照のこと。試験機は、電磁弁の切り替えにより、海水凝縮器と低温凝縮 器の切り替え運転がおこなえるように設計をおこなった。

5.4.3 冷熱の切り替え運転試験装置の性能評価試験

(1) 試験設備

試験設備は要素技術を組み合わせた空調装置と同様である(5.3.3節を参照)。低温 凝縮器の低温冷熱源として、ブラインチラーユニットで冷却したブライン水を使用し、 海水凝縮器の冷却源として、クーリングタワーからの清水を使用する。

(2) 海水凝縮器と低温凝縮器の切り替え温度条件

海水温度(本試験では海水の代わりにクーリングタワーからの清水を使用)がブラ イン温度より低い場合は海水凝縮器を、ブライン温度が海水温度より低い場合は低温 凝縮器を使用する。ただし、境界温度付近での切り替えが頻繁に発生する可能性があ るため、温度差をつけ、ブライン温度が海水温度より1℃以上低くなった場合に切り 替えることとした。

(3) 凝縮器の切り替え方法と冷媒の流れ

海水冷却運転時と凝縮器の切り替え(海水凝縮器→低温凝縮器)運転時の電磁弁の状態を表 5.4.1 に示す。表 5.4.1 の電磁弁 SV9 の働きについては、5.3.3 節の(6)を参照のこと。海水冷却運転時の系統内の冷媒の流れを図 5.4.1 に、凝縮器の切り替え運転時の系統内の冷媒の流れを図 5.4.2 に示す。

		運転モード			
電磁弁	設置個所	海水冷却運転 (海水凝縮器を使用)	凝縮器の切り替え運転 (海水凝縮器→低温凝縮器)		
SV1	圧縮機吸込	開	開		
SV2	海水凝縮器入口	開	閉		
SV3	均圧管	開	閉		
SV4	海水凝縮器出口	開	開		
SV5	液ポンプ吸込	閉	開		
SV6	液ポンプ吐出	閉	閉		
SV7	低温凝縮器入口	閉	閉		
SV8	油戻り管	開	開		
SV9	容量調整弁入口	開 or 閉	閉		

表 5.4.1 海水冷却運転時と凝縮器の切り替え運転時の電磁弁の状態

図 5.4.1 海水冷却運転の冷媒の流れ

図 5.4.2 凝縮器切り替え運転時の冷媒の流れ

低温凝縮器は、圧縮機と海水凝縮器の間に直列に配置し、各凝縮器間を均圧管で接続 した。直列に配置することで、一方への凝縮器へ冷媒の偏りを防ぐことができ、どのよ うな状態からでも海水冷却運転が可能となり、さらに、海水凝縮器から低温凝縮器の切 り替え、またその逆の移行もスムーズにおこなうことができる。

また、海水冷却運転中は、低温凝縮器の冷却水ラインのポンプを停止し、低温凝縮器 の冷却水の供給を停止する方式とした。理由としては、運転状態によっては冷熱回収し た冷水温度が海水温度よりも低い状態での海水冷却運転も想定されるため、海水冷却運 転中に低温凝縮器内で冷媒が凝縮した場合は、海水凝縮器で冷媒がガス化し、冷却能力 の低下の可能性があるためである。

凝縮器の切り替え運転は、各運転モード(低圧縮比冷凍サイクル、冷媒液のポンプ循 環冷凍サイクル)へスムーズに移行できるように、配管系統内の冷媒を一度、低温凝縮 器に回収することを目的としている。切り替え運転時は圧縮機を運転し、図 5.4.2 に 示したような冷媒の流れで海水凝縮器内を含む配管系統内の冷媒を、徐々に、低温凝 縮器側に回収していく。十分に冷媒が回収されると、圧縮機の吸込圧力が低下し、低 圧圧力スイッチが作動し、圧縮機は自動停止する(正常停止)。圧縮機停止後は、図 5.3.5 で示したように低温凝縮器の冷却水の温度条件により各運転モードでの運転を 開始する。凝縮器の切り替えにおけるフローチャートを図 5.4.3 に示す。

図 5.4.3 凝縮器の切り替えにおけるフローチャート

(4) 起動と停止

ハイブリッド空調装置では海水と低温の冷熱の切り替え運転をおこなうが、起動時や 停止時の冷熱の状態はLNG燃料の運用や船舶の状態によって様々である。どのような状 態であっても安定した運転が可能となるように、起動と停止は必ず自動的に海水冷却運 転に切り替えておこなうこととした。つまり、海水冷却運転で起動後、低温冷熱の状態 によって、凝縮器の切り替え運転をおこない、その後、各運転モードに移行する。停止 時はどのような運転状態であっても海水冷却運転へ移行し、海水凝縮器でポンプダウン (系統内の冷媒を凝縮器に回収する作業)停止する。停止時の電磁弁の状態を表 5.4.2 に 示し、系統内の冷媒の流れを図 5.4.4 に示す。また、空調装置には、自動で運転の切り 替えをおこなうハイブリッドモードと、海水冷却運転のみをおこなう海水冷却運転モー ドの 2 つの運転モードを装備した。

雪磁金	シ 罟 佣 正	運転モード
电磁开	<u> </u>	停止
SV1	圧縮機吸込	開
SV2	海水凝縮器入口	開
SV3	均圧管	開
SV4	海水凝縮器出口	閉
SV5	冷媒液ポンプ吸込	閉
SV6	冷媒液ポンプ吐出	閉
SV7	低温凝縮器入口	閉
SV8	油戻り管	開
SV9	容量調整弁入口	閉

表 5.4.2 停止時の電磁弁の状態

図 5.4.4 停止(ポンプダウン)時の冷媒の流れ

(5) 試験結果と評価

海水冷却運転中に低温凝縮器の冷却水(ブライン)温度を下げて、海水冷却運転か ら凝縮器の切り替え運転時の運転状態の確認をおこなった。各冷却水温度の変化にお ける運転状態を図 5.4.5 に示す。

図 5.4.5 冷却水温度の変化における運転状態

海水凝縮器の冷却水入口温度 tw3 よりブラインタンク内温度 tb3 が1℃以上低くなったときに運転が切り替わり、タンク内のブライン水が低温凝縮器へ供給を始めたことが確認できる。海水運転中に低温凝縮器入口の冷却水温度がタンクよりも高いのは、高温の圧縮機の吐出ガスが低温凝縮器を通過するためである。このときの空調装置の冷却能力を図 5.4.6 に示す。

図 5.4.6 冷却能力と運転状態の関係

凝縮器の切り替え運転時も一定の冷却能力を維持できていることが確認できる。切 り替え運転終了時に冷却能力が低下するのは圧縮機が各運転モードに移行する前に一 度停止するためである。停止後の低温冷熱による各種運転モードにおける運転状態は、 要素技術を組み合わせた空調装置の5.3節を参照のこと。

次に低圧縮比運転中に低温凝縮器の冷却水(ブライン)の温度を上げて、低温凝縮器 による運転から海水凝縮器による運転への切り替え時の確認をおこなった。各冷却水 温度の変化における運転状態を図 5.4.7 に示す。

図 5.4.7 冷却水温度の変化における運転状態

ブラインタンク内の温度 tb3 が上昇し、海水凝縮器入口温度 tw3 より高くなると海水冷却運転への移行が確認できる。低圧縮比冷凍サイクルにおいてタンク内の温度が 0℃から 10℃の間、低温凝縮器入口温度 tw1 が 10℃となっているのは三方弁による温度制御をおこなっているためである(5.3.3 節の図 5.3.6 を参照)。海水冷却運転中に低温凝縮器入口の冷却水(ブライン)温度が徐々に増加しているのは、圧縮機の吐出ガスによって昇温されるためである。このときの空調装置の冷却能力を図 5.4.8 に示す。

図 5.4.8 冷却能力と運転状態の関係

低圧縮比冷凍サイクルから海水冷却運転への切り替えは、お互いの冷却水温度がほ とんど同じとなるため、圧縮機の運転状態の変化が少なく安定していることが確認で きる。

5.4.4 冷熱の切り替え運転試験装置のまとめ

海水を冷却源とする海水凝縮器と低温冷熱を冷却源とする低温凝縮器を切り替えて 利用する試験用空調装置を試作して、運転状態の確認をおこなった。試験運転の結果、 それぞれの凝縮器へ問題無く切り替えができており、切り替え時も一定の冷却能力を 維持していた。運転の起動と停止を海水冷却運転でおこなうことにより、低温冷熱の 状態によらない安定した運転が可能となった。結果的に、低温冷熱を利用した各サイ クル(低圧縮比冷凍サイクル、冷媒液のポンプ循環冷凍サイクル)への移行をスムーズ におこなうことができ、従来型と比べて空調装置としてのエネルギー効率の向上が可 能となる。

5.5 ブラインによる冷熱回収・蓄冷試験用装置の試作

LNG の余剰冷熱をブラインにより回収・蓄冷し、再利用するシステムを構築するため、 ブラインの冷却方式、伝熱特性、必要温度と流量制御、冷媒液のポンプ循環冷凍サイク ルおよび断熱タンク等について明確にし、冷熱回収・蓄冷試験用装置を設計・試作した 後、性能試験を行い、実用時の装置構成や、蓄冷タンク容量、ブライン流量の設計がで きる技術を確立する。

(1) 記号と添字

本節で記載している記号および添字について以下に説明する。

		記ち	一見		
V	蓄冷槽の体積	m ³	c _p	比熱	J/kg · K
L	蓄冷槽の高さ	m	Α	表面積	m ²
D	直径	m	K	熱通過率	$W/m^2 \cdot K$
θ	温度	°C	С	熱容量	J/K
Ζ	高さ方向の位置	m	Ε	蓄冷量	J
t	時間	S	Ar	アルキメデス数	_
к	温度拡散率	m ² /s	$ heta^*$	無次元温度	_
и	速度	m/s	Z^*	無次元高さ	_
Q	体積流量	m ³ /s	t^*	無次元時間	_
g	重力加速度	m/s ²		無次元完全混合域	
ρ	密度	kg/m ³	R	深さ	_

記号一覧

添字

0	初期状態	loss	損失
in	入口	nom	名目
а	周囲環境	ave	利用可能
lim	限界		

5.5.1 蕃冷システムの設計

(1) 蓄冷システムの狙い

冷熱回収熱交換器の冷熱源は燃料として消費される LNG であり、回収可能な冷熱量は 船舶の運行状態に左右される。停泊しているときはほとんど冷熱を得ることができない が、航行しているときは空調装置が必要とする量を上回る冷熱が得られることも考えら れる。しかし、本事業における冷熱回収システムだけでは、空調装置で必要とされる冷 熱量に相当する LNG のみを冷熱回収器に供給し、その他は本来の気化器あるいはガスヒ ータにバイパスさせる必要があるため、このような余剰の低温エネルギーは捨てること になる。この余剰冷熱をブラインの冷却に利用して蓄冷し、冷熱が不足する停泊時に取 り出すことができれば、空調システム全体のエネルギー効率をより改善することができ る。

(2) 蓄冷システムの評価基準

蓄冷システムは陸上の建築物において多数の前例があり、その設計手法は広く知られ ている(参考文献 11)。陸上の建築物で採用されている媒体は水であるが、本事業で 採用しているブラインの場合においても同じ手法が適用できると考えられる。本項では、 蓄冷システムの一般的な評価基準である容積効率について簡単に説明する。

蓄冷システムのモデルを図 5.5.1、蓄冷槽の温度変化を図 5.5.2 に示す。

図 5.5.1 蓄冷システムのモデル

図 5.5.2 蓄冷槽の温度変化

蓄冷槽はブラインで満たされており、蓄冷を開始する直前は温度 θ_0 で一様である。 蓄冷を開始すると、ブラインが蓄冷槽上部の出口から熱交換器に供給され、 θ_{in} まで冷 却されたブラインが蓄冷槽下部の入口から流入する。蓄冷槽の入口から流入した温度 θ_{in} のブラインは、蓄冷槽内に初めから存在していた温度 θ_0 のブラインよりも密度が 大きいため、適切な設計を行えば、ほとんど拡散することなく蓄冷槽の下部に層を成し て蓄えられる。そのため、このような蓄冷方式は温度成層型と呼ばれている。

熱交換器に供給するブラインの温度が低下すると、冷却能力の低下やブラインの凍結 が生じるため、蓄冷槽の出口温度が予め設定した温度 θ_{lim} になった時点で蓄冷は終了 する。 θ_{lim} は、送水限界温度と呼ばれている。

蓄冷槽の温度分布を、横軸を温度、縦軸を高さとしてプロットすると、図 5.5.3 のようになる。赤色の線が蓄冷開始時、青色の線が蓄冷終了時の温度分布を表しており、この 2 つの線に挟まれた部分(斜線部)の面積が、蓄冷槽に蓄えられた冷熱量に相当する。

バッファタンク等と同じように完全混合を仮定した場合、タンクの温度は一様となる ため、 θ_{lim} よりも低い温度のブラインを貯めることはできない。しかし、温度成層させ た場合は θ_{lim} よりも低い温度のブラインを貯めることが可能となり、容積あたりの蓄 冷量を増やすことができる。

図 5.5.3 蓄冷槽の温度分布と容積効率

蓄冷槽内のすべてのブラインが温度 θ_{in} まで冷却されたと仮定した名目的な蓄冷量 E_{nom} は同図の S_1 、実際の蓄冷量 E は同 S_2 に相当し、この面積比 S_2/S_1 は容積効率 η_v と呼ばれている。 η_v を数式で表すと式(5.5.4)となり、この値が蓄冷システムを評 価する指標となる。

$$E_{\rm nom} = C(\theta_0 - \theta_{\rm in}) \tag{5.5.1}$$

$$C = \rho c_{\rm p} V \tag{5. 5. 2}$$

$$E = \eta_{\rm v} E_{\rm nom} \tag{5. 5. 3}$$

$$\eta_{\rm v} = \int_0^L (\theta_0 - \theta) dz / (\theta_0 - \theta_{\rm in}) L$$
(5.5.4)

(3) 蓄冷システムのシミュレーション

容積効率 η_v の導出に必要となる蓄冷槽の温度分布を予測するため、R 値モデルによるシミュレーションを行った。R 値モデルの概要を図 5.5.4 に示す。

図 5.5.4 R 値モデル

蓄冷槽の体積は V、高さは L であり、初期状態では温度 θ_0 のブラインで満たされている。この蓄冷槽に、直径 D_{in} の入口管から温度 θ_{in} のブラインを流量 Q で供給した場合のステップ応答を考える。

完全混合域 ($0 \le z \le RL$) では、入口管から流入したブラインと蓄冷槽内のブライン が瞬時に混合し、一様な温度を形成する。一次拡散域 ($RL < z \le L$) では、熱伝導およ び流体の移動によって熱が拡散する。完全混合域および一次拡散域のエネルギー保存式 は、それぞれ式(5.5.5)および式(5.5.6)で表される。

$$\frac{\partial \theta}{\partial t} = \frac{Q}{VR} (\theta_{\rm in} - \theta) \qquad (0 \le z \le RL) \tag{5.5.5}$$

$$\frac{\partial \theta}{\partial t} = \kappa \frac{\partial^2 \theta}{\partial z^2} - u \frac{\partial \theta}{\partial z} \qquad (RL < z \le L) \tag{5.5.6}$$

R は無次元完全混合域深さであり、式(5.5.7)で推定できることが報告されている(参考文献 12)。

$$R = R_0 + 0.4t^* \tag{5.5.7}$$

$$R_0 = \frac{0.7D_{\rm in}Ar_{\rm in}^{-0.5}}{L} \tag{5.5.8}$$

t* は無次元時間であり、換水回数を表す。Arin は入口におけるアルキメデス数であり、密度差による浮力と流体の持つ運動量の比を表す無次元数である。入口アルキメデス数は蓄冷システムの特性を決定する重要なパラメータであり、大きいほど温度成層しやすくなる。

$$t^* = \frac{Q}{V}t \tag{5.5.9}$$

$$Ar_{\rm in} = \frac{D_{\rm in}g}{u_{\rm in}^2} \left(\frac{\rho_{\rm in} - \rho_0}{\rho_0}\right)$$
(5.5.10)

蓄冷槽の初期状態より、式(5.5.5)および式(5.5.6)の初期条件は、式(5.5.11)で与えられる。式(5.5.5)は z に関する微分を含まないため、この初期条件のみで解くことができる。

$$\theta = \theta_0 \qquad (t = 0) \tag{5.5.11}$$

式(5.5.6)の z = RL の境界条件は、式(5.5.5)の解で与えられる。z = L の境界条件は、蓄冷槽が完全に断熱されていると仮定すると、式(5.5.12)で与えられる。

$$\frac{\partial \theta}{\partial z} = 0 \qquad (z = L) \tag{5. 5. 12}$$

このシミュレーションによって得られた温度分布を式(5.5.4)に適用すると、容積効 率を求めることができる。

(4) 侵入熱の解析

計算を簡単にするため、蓄冷槽の温度は一様であると仮定する。蓄冷槽の初期温度を θ_0 、熱容量を C、表面積を A、熱通過率を K、気温を θ_a とすると、エネルギー保存 式は式(5.5.13)で表される。

$$\frac{d\theta}{dt} = \frac{AK}{C} (\theta_{\rm a} - \theta) \tag{5. 5. 13}$$

式(5.5.13)を解くと式(5.5.14)が得られ、侵入熱による損失 *E*_{loss} は式(5.5.15)で表 される。

$$\theta = \theta_0 + (\theta_a - \theta_0) \left[1 - \exp\left(-\frac{AK}{C}t\right) \right]$$
(5. 5. 14)

$$E_{\text{loss}} = C(\theta_a - \theta_0) \left[1 - \exp\left(-\frac{AK}{C}t\right) \right]$$
(5.5.15)

(5) 利用可能な冷熱量

実際に利用可能な冷熱量 E_{ave} は、式(5.5.16)で表される。同式より、容積効率 η_v および侵入熱による損失 E_{loss} の値を予測することができれば、利用可能な冷熱量 E_{ave} に対して必要とされる名目的な蓄冷量 E_{nom} が求まり、蓄冷システムの設計が可能となる。

$$E_{\text{ave}} = \eta_{\text{v}} E_{\text{nom}} - E_{\text{loss}} \tag{5.5.16}$$

5.5.2 蕃冷システムの試作

(1) 相似則を利用した無次元化

蓄冷槽のように装置が大規模である場合、実物と同じ規模の装置で試験を実施することは困難であるため、ほとんどの場合、小規模な模型で試験を行うことになる。その場合、事象を左右する無次元数の抽出が重要となる。

蓄冷槽における無次元数は、式(5.5.9)で表される無次元時間 t^* 、式(5.5.10)で表さ れる入口アルキメデス数 Ar_{in} 、式(5.5.17)で定義される無次元温度 θ^* 、および式 (5.5.18)で定義される無次元高さ z^* の 4 つであり、このように無次元化することによ って、規模や運転条件が異なるもの同士を比較することができる。

$$\theta^* = \frac{\theta - \theta_0}{\theta_{\rm in} - \theta_0} \tag{5. 5. 17}$$

$$z^* = \frac{z}{D_{\rm in}}$$
(5. 5. 18)

(2) 設計条件

試作した蓄冷システムの設計条件と主な仕様を表 5.5.1 に示す。入口温度はブラインの使用限界である -10℃、送水限界温度は冷熱回収熱交換器の入口温度の設計値であ

る -5℃ とした。送水限界温度 θ_{lim} を無次元化すると 0.83 であり、無次元化した出 口温度が 0.83 になったときの温度分布で容積効率を評価する。前項で述べたように、 無次元化すれば異なる条件でも同列に比較できるため、必ずしも実用時の条件あるいは 設計条件で試験を実施する必要はない。

	項目	記号	単位	値
温	初期温度	θ_0	°C	20
度条	入口温度	$\theta_{\rm in}$	°C	-10
件	送水限界温度	$\theta_{\rm lim}$	°C	-5
	体積 ※1	V	m ³	0.37
	熱容量	С	MJ/K	1.39
蓄	高さ ※1	L	mm	1595
荷槽	入口管内径	D _{in}	mm	53.5
	表面積	Α	m ²	3.7
	乾燥質量	_	kg	150
	防熱材	_	_	エアロフレックス
	防熱厚さ	_	mm	20
防 熱	熱伝導率	_	W/m·K	0.035
,	表面の熱伝達率	_	W/m² ⋅ K	8
	熱通過率 ※2	K	W/m²⋅K	1.44
	 插 指			ナイブライン Z1
				46w%
ブ	流量	Q	m ³ /h	0.5
ライ	密度(初期温度)	$ ho_0$	kg/m ³	1049
シ	密度(入口温度)	$ ho_{ m in}$	kg/m ³	1063
	温度拡散率	κ	mm ² · s	0.122
	入口アルキメデス数	Ar _{in}		1.83

表 5.5.1 蓄冷システムの設計条件と主な仕様

※1 ブラインが存在する蓄冷有効部のみ考慮

※2 蓄冷槽の熱伝導率およびブライン側の熱伝達率の影響は小さいため無視する

試作した蓄冷槽の外形図を図 5.5.5、外観を図 5.5.6 に示す。胴体には温度センサを取 り付けるためのねじ穴を 11 箇所設け、蓄冷槽の温度分布を測定できるようにした。また、 液面を確認するための液面計も取り付けた。

図 5.5.5 蓄冷槽の外形図

図 5.5.6 蓄冷槽の外観

5.5.3 蕃冷システムの性能評価試験

(1) 試験装置

試験装置の系統図を図 5.5.7 に、外観を図 5.5.8 に示す。冷熱回収の試験は前節で 実施済みであるため、本節では蓄冷システムの性能評価を行った。

図 5.5.7 試験装置の系統図

番号	名称	機能
1	ブラインタンク	蓄冷槽に供給するブラインを貯めておく
2	三方弁	蓄冷槽に供給するブラインの温度を一定に保つ
3	ポンプ	蓄冷槽にブラインを供給する
4	蓄冷槽	インパーク制御にようて加重は一足に保たれる 供試品

表 5.5.2 試験装置の構成

①ブラインタンクに指定した温度のブラインを貯めておき、④蓄冷槽に供給する。蓄 冷槽に供給するブラインの温度は②三方弁で、流量は③ポンプの回転数をインバータ制 御することによって一定に保たれる。

図 5.5.8 試験装置の外観

試験に使用した計測器を表 5.5.3 に示す。 T_{s1} は蓄冷槽下部の入口管と同じ高さ、 T_{s11} は上部の出口管と同じ高さにセンサを設置しており、 $T_{s2} \sim T_{s10}$ はその間に等間隔で配置した(図 5.5.5 参照)。

記号	測定項目	センサの種類	メーカ	型式
$T_{\mathbf{w}}$	ブライン入口温度	Pt100	東邦電子	KS3
$T_{\rm s1} \sim T_{\rm s11}$	ブライン温度分布	Pt100	東邦電子	KS3
F _w	ブライン流量	電磁流量計	アズビル	MGG11D

表 5.5.3 計測器一覧

(2) 容積効率の試験結果

試験の運転条件と試験結果を表 5.5.4、入口アルキメデス数と容積効率の関係を図 5.5.9 に示す。設計条件の項で述べたように、容積効率は無次元化した出口温度 (T_{s11}) の値が 0.83 になった時点の温度分布 ($T_{s1} \sim T_{s11}$)を用いて算出している。ブライン温度の違いによる密度差や流量といった因子はすべて入口アルキメデス数に反映されるため、入口アルキメデス数が容積効率を決定する支配的なパラメータとなる。

乗.日.	初期温度	入口温度	流量	入口アルキメデス数	容積効率
留万	[°C]	[°C]	[m ³ /h]	[—]	[—]
1	30.5	0.1	0.50	1.94×10^{0}	0.96
2	25.3	20.0	0.50	3.51×10^{-1}	0.99
3	25.3	9.1	1.00	2.61×10^{-1}	0.97
4	25.3	20.1	1.00	8.60×10^{-2}	0.97
5	25.2	20.0	1.50	3.82×10^{-2}	0.93
6	15.1	10.1	3.00	8.23×10^{-3}	0.91

表 5.5.4 運転条件と試験結果

図 5.5.9 入口アルキメデス数と容積効率

図 5.5.9 より、容積効率は入口アルキメデス数が大きいほど良くなり、理論通りの 傾向が見られた。容積効率の理論値と実験値との差は絶対値で 0.05 以下、割合で 5% 以下であり、シミュレーションによる容積効率の推定が有効であることが確認できた。

(3) 侵入熱の試験結果

侵入熱による冷熱の損失量を確認するため、蓄冷槽に 0℃ のブラインを投入した後 約3日間放置し、蓄冷槽の温度変化を測定した。結果を図 5.5.10 に示す。この期間の 平均気温は、22.5℃ であった。

図 5.5.10 侵入熱による温度上昇

 T_{s11} は理論値から外れているが、その他の測定点については理論値とほぼ一致した。 T_{s11} が理論値よりも高いのは、侵入熱によって暖められた壁面付近のブラインが浮力に よって上昇し、上部に溜まったためと考えられる。全測定点の平均値は理論値とほぼ一 致していることから、侵入熱についても理論解析によって予測できることが確認できた。

5.5.4 ブラインによる冷熱回収・蓄冷試験用装置のまとめ

ブラインによる蓄冷試験用装置として蓄冷槽を試作し、蓄冷システムの評価基準とな る容積効率および侵入熱を評価した。試験の結果、容積効率および侵入熱はほぼ理論解 析どおりとなり、本手法を用いて実用時の蓄冷システムを設計できることが確認できた。

5.6 新規空調装置およびシステム全体の設計指針のまとめ

2年間の本事業における実施結果をベースとして、実船に適用可能な新規空調装置お よびシステム構成の設計指針の整理・取りまとめを行うと共に、モデルケースにて冷熱 回収熱交換器、新規要素技術を取り入れた空調装置、冷熱の蓄冷と再利用システムの設 計を行う。このときの全体のエネルギー効率の向上について試算する。

5.6.1 冷熱回収システムの設計指針

回収可能な冷熱量は主機に供給される LNG 流量で決まる。一方、空調装置の負荷は航路、 季節、時刻により変動するため、LNG の流量と空調装置の負荷は完全に独立した要素とい える。したがって、本事業で開発する冷熱回収システムおよび冷熱回収熱交換器の設計に おいて、この独立した2つの要素の関係を十分に考慮して設計を行う必要がある。ここで は、冷熱回収熱交換器の容量の決定と設計における考え方を指針として示す。

冷熱回収システムの系統図の例を図 5.6.1 に示す。

図 5.6.1 冷熱回収システムの系統図例

LNG の流量と圧力

冷熱回収熱交換器により回収可能な最大冷熱量と熱交換器の設計圧力を決めるため、 LNGの最大流量と供給圧力を確認する。本事業で開発した冷熱回収熱交換器の設計圧力 は1MPaであり、4ストローク原動機向けの低圧燃料供給システムに対応するもので ある。

(2) 燃料供給システムとの接続

実際に冷熱回収熱交換器において回収する冷熱量は、回収冷熱の消費側である空調装置での冷熱消費量および蓄冷システムの容量によって決まる。冷熱の回収量が蓄冷分を含む消費量を超える場合は、冷熱回収媒体の循環温度は下がり続ける。冷熱回収媒体の 凍結防止のため、冷熱回収熱交換器へのLNG供給量を調整しなければならない。

同時に、主機への燃料の安定供給は絶対であるため、冷熱回収熱交換器は燃料供給シ

ステムの気化器と並列に接続する。冷熱回収熱交換器と燃料供給システムの気化器への LNG 流量の分配、および燃料供給システムの気化器、昇温器への高温蒸気供給量は、燃 料供給システムの昇温器出口温度を保持するように制御されなければならない。

(3) 冷熱回収媒体

冷熱回収媒体は、空調システムが要求する温度によってブラインと水を使い分ける。 次節に記述する冷熱回収熱交換器の交換熱量の設定において、冷熱回収媒体の違いにより、熱容量などの条件が変わる。

(4) 冷熱回収熱交換器の交換熱量の選定

冷熱回収熱交換器の交換熱量を決めるために必要な条件と設計の概略フローを示す。 空調装置の運転モード切替えのために、冷熱回収媒体の循環経路の系全体の温度を低 下させる必要がある。この系全体の熱容量と系への侵入熱量を空調装置での冷熱消費量 に追加する。

また、余剰分の蓄冷に関しては、現実的には蓄冷槽の設置スペースにより制限される ことが想定される。蓄冷容量を超えた分の冷熱回収分は不要となるから、蓄冷時間を考 慮して蓄冷分の回収冷熱量を見積もることも、より最適な冷熱回収熱交換器の交換熱量 決定につながる。

冷熱回収熱交換器の交換熱量の決定要因

- ① 空調装置での冷熱消費量
- ② 冷熱回収媒体の循環系への侵入熱
- ③ 冷熱回収媒体の循環系の熱容量
- ④ 蓄冷容量(蓄冷時間)

このように、冷熱回収熱交換器の容量決定には諸々要因が絡むため、最適な冷熱回収 熱交換器の容量はケースごとに協議の上、決めることとする。

また、後述のモデルケースにおける設計例においては、LNG 最大流量に相当する最大 冷熱回収量に合わせて熱交換器の容量を決めている。

(5) 冷熱回収熱交換器の設計

冷熱回収熱交換器における冷熱回収温度、回収媒体、交換熱量が決まれば、熱交換器の構造設計を行うことができる。構造設計については、本事業で得た補正係数を織り込む。

熱交換器の設計フロー(概略)

- ① 冷熱回収媒体の出口温度(冷熱回収温度/利用温度)を決める。
- ② 冷熱回収温度/利用温度により、冷熱回収媒体を決める。
- ③ 交換熱量を決める。

- LNG 流量を決める。
- ⑤ 熱交換器の構造を決める(伝熱管径、パス数、長さ、本数、シェル径、バッフル間 隔など)。
- ⑥ LNG/NG の圧力損失を計算する。
- ⑦ 圧力損失が許容範囲内にならなければ熱交換器の構造を変更する。あるいは熱交換器を複数台並列に接続する。
- (6) LNG の高沸点成分への対策

LNG の組成は産地等によって多種多様であり、ブタンなどの沸点が高い成分が含まれ ていることもある。加熱源が蒸気などのように高温の場合はほとんど問題にならないが、 冷熱回収熱交換器のように低温のブラインや水で LNG を加熱する場合、このような高沸 点成分を気化できない可能性がある。したがって、気化できなかった成分が熱交換器内 に溜まることを防止するため、ガス出口とは別に液出口も設ける。

(7) 保護装置

冷熱回収媒体であるブラインまたは水の凍結によって冷熱回収熱交換器が破損する ことを防止するため、凍結に対する保護装置を設ける。この保護装置は5.1.5節で示し たように、冷熱回収媒体の出入口圧力差(または流量)および NG 出口温度が異常値と なったときに作動するものである。保護装置が作動すると、冷熱回収熱交換器への LNG の供給を停止し、LNG の全量を燃料供給システムの気化器に供給する。

冷熱回収熱交換器へのLNG供給を停止するときのバルブ動作速度は、気化器で消費する蒸気発生量の追従性を考慮して決定する。したがって、保護装置が作動するタイミングは、十分な余裕を持たせる。

(8) LNG の漏洩検知

冷熱回収熱交換器でのLNG 漏洩を検知するため、冷熱回収媒体の戻り配管に漏洩ガス 除去タンクを設ける。タンクにはガス検知器および警報装置を取り付け、漏洩を検知し た場合は警報を鳴らし、冷熱回収熱交換器へのLNG供給を停止する。タンクに溜まった 漏洩ガスは、安全な場所に導いて放出する。

5.6.2 空調システムの設計指針

回収した冷熱を利用した空調システムについて、空調負荷、回収冷熱量による運転モードの選択や組み合わせ、設計条件、機器の選定、系統および運転切り替え方法についての指針を述べる。前提として、どのような組み合わせにおいても、海水と LNG からの回収冷熱の切り替えが可能なハイブリッド空調システムとする。空調システムの系統図の例を図 5.4.1 に示す。

図 5.6.2 空調システムの系統図

(4) 空調システムの運転モードの選択と組み合わせ

本事業で検証した運転モードとして、低圧縮比冷凍サイクル(4.2 節を参照)、高 過冷却冷凍サイクル(4.3 節を参照)、冷媒液のポンプ循環冷凍サイクル(5.2 節を参 照)がある。各サイクルの選択は、LNGから回収できる冷熱量とその温度域により決 まってくる。各運転モードにおける条件を表 5.4.1 に示す。ここで示す温度上限およ び下限は、検証結果から得られた目安であり、実際には設計条件などにより増減する。

		冷熱回収する	冷水の温度域		
運転モード	空調システムの必要凝縮熱量と LNGからの回収冷熱量	温度上限	温度下限	冷却水 種類	動力削減効果 (高い順)
低圧縮比 冷凍サイクル	凝縮熱量<回収冷熱量	海水以下	5°C	清水	2
高過冷却 冷凍サイクル	凝縮熱量>回収冷熱量	海水以下	0°C	清水 or ブライン	3
冷媒液のポンプ 循環冷凍サイクル	凝縮熱量<回収冷熱量	0°C	-5°C	ブライン	1

表 5.6.1 運転モードにおける条件比較

動力削減効果の点から、空調システムの必要凝縮熱量に対して、十分な回収冷熱量が見込め、 冷熱回収する冷水の温度域が低温の場合、つまり、凝縮器の冷却水に低温が利用できる場合 は、冷媒液のポンプ循環冷凍サイクルが選択できる。次に、十分な回収冷熱量が見込め、冷 熱回収する冷水の温度域がやや高めの場合は低圧縮比冷凍サイクル、回収冷熱量が少ない場 合は、高過冷却冷凍サイクルを選択できる。

各運転モードの組み合わせについては、低圧縮比冷凍サイクルと高過冷却冷凍サイ クルはそれぞれ単体での運用または併用を選択可能だが、冷媒液のポンプ循環冷凍サ イクルは制御のため、低圧縮比冷凍サイクルとの併用が必須となる。

空調システムの決定要因

- ① 空調システムの凝縮熱量と回収冷熱量の関係
- ② 冷熱回収する冷水の温度域=凝縮器の冷却水として利用できる温度域

これらの要因は、冷熱回収熱交換器の設計にも絡むため、最適な空調システムはケ ースごとの協議の上、決定する。また、後述のモデルケースにおける設計例は、動力 削減効果の高い冷媒液のポンプ循環冷凍サイクルを選択した空調システムとする。

(5) 設計条件

設計条件は、従来の一般的な海水冷却運転を基準として、各運転モードの条件を決定 する。一例とし、海水冷却運転での設計条件を表 5.6.2 に示す。

項目	単位	海水冷却運転
凝縮器冷却水	-	海水
凝縮器冷却水入口温度	°C	32
蒸発器入口空気乾球温度(DB)	°C	30.5
蒸発器入口空気湿球温度(WB)	°C	22.85
冷媒	Ι	R404A
凝縮温度	°C	40
蒸発温度	°C	5
過熱度	K	8
過冷却度	K	1

表 5.6.2 海水冷却運転の設計条件

海水冷却運転の条件を基準とし、低圧縮比冷凍サイクルでは凝縮温度を低下、高過冷 却冷凍サイクルでは過冷却度を増加、冷媒液のポンプ循環冷凍サイクル運転では凝縮温 度を蒸発温度以下とし、過熱度を変更する。各モードの設計条件の一例を表 5.6.3 に示 す。

項目	単位	海水冷却 運転	低圧縮比 冷凍サイクル	高過冷却 冷凍サイクル	冷媒液のポンプ循環 冷凍サイクル
凝縮器冷却水種類	-	海水	清水	海水	ブライン
凝縮器冷却水入口温度	°C	32	10	32	-5
蒸発器入口空気乾球温度(DB)	°C	30.5	\leftarrow	\leftarrow	←
蒸発器入口空気湿球温度(WB)	°C	22.85	\leftarrow	\leftarrow	\leftarrow
冷媒	-	R404A	\leftarrow	\leftarrow	\leftarrow
凝縮温度	°C	40	20	40	3
蒸発温度	°C	5	\leftarrow	\leftarrow	←
過熱度	K	8	\leftarrow	\leftarrow	0.5
過冷却度	K	1	\leftarrow	35	1
過冷却器冷却水種類	-	_	-	ブライン	-
過冷却器冷却水温度	°C	_	-	0	-

表 5.6.3 各モードの設計条件

これらの設計条件をもとに、空調負荷に対して必要な冷却能力を満足する機器を選定する。

(6) 空調システムの設計

空調負荷に対して必要な冷却能力、運転モード、運転条件が決まれば、空調システム の設計を行うことができる。

空調システムの設計フロー(概略)

- 空調負荷に対して、基準となる海水冷却で、必要な冷却能力を満足する空調装置の 設計条件を決める。
- ② LNGから回収できる冷熱量と、回収する冷水の温度域により、最適な運転モード(低 圧縮比冷凍サイクル、高過冷却冷凍サイクル、冷媒液のポンプ循環冷凍サイクル) を決める。
- ③ 空調負荷に対して、各運転モードで、必要な冷却能力を満足する空調装置の設計条件を決める。
- ④ 海水冷却の空調装置と各運転モードの空調装置を組み合わせた機器の設計をおこなう。
- (7) 冷熱回収システムとの接続

冷熱回収システムと空調システムは、利用する冷熱回収媒体(冷却水)の設計流量を それぞれが独立して決めることができるように、流量差を吸収するバッファタンクを介 して接続する。また、回収冷熱量の変動によって空調システムの運転モードの切り替え が頻繁に発生することを防ぐため、タンクの熱容量によって一定の運転時間が可能とな るように、タンク容積を決定する。

(8) 運転切り替え方法

回収冷熱を利用した運転の切り替えのフローを以下に示す。

運転切り替えのフロー

- 運転開始時、回収冷熱量の状態に関係なく、安定した運転が可能な海水冷却運転で 起動する。起動時は一定時間周波数を上げて、圧縮比の確保、冷凍機油の回収をお こなう。
- ② 起動後、圧縮機はインバータによる回転数制御を始める。またバッファタンク内の 冷熱回収媒体(冷却水)温度が、海水より低温であれば、低温凝縮器、あるいは過 冷却器(高過冷却冷凍サイクルのみ)に冷却水の供給を始める。
- ③ 低圧縮比冷凍サイクル、冷媒液のポンプ循環冷凍サイクルの場合は、5.4.3節の表
 5.4.1で説明する電磁弁の状態に切り替えて凝縮器の切り替え(海水凝縮器→低温 凝縮器)運転に移行する。
- ④ 圧縮機停止(凝縮器切り替え運転終了)後、5.3.3節の表 5.3.6で説明する電磁弁の状態に切り替えて、低圧縮比冷凍サイクルで運転を再開する。
- ⑤ 冷媒液のポンプ循環冷凍サイクルの場合は、低温凝縮器入口の冷却水温度が冷媒液 ポンプ起動温度まで低下後、冷媒液ポンプ吸込の過冷却度を確保するため、圧縮機の周波数を強制的に上げて運転する。
- ⑥ 過冷却度が確保されたら、冷媒液ポンプ起動後、5.3.3節の表 5.3.6で説明する電磁弁の状態に切り替えて、圧縮機を停止し、冷媒液ポンプ単体での運転を継続する。
- ⑦ 冷却水温度が、低圧縮比冷凍サイクルの切り替え温度まで昇温した場合、低圧縮比 冷凍サイクルに移行する。
- ⑧ すべての運転モードにおいて、低温凝縮器の冷却水温度が、海水温度以上となった 場合は、海水冷却運転に移行し、低温凝縮器の冷却水の供給を停止する。

また、運転停止時はどのモードで運転中でも海水冷却運転に移行し、海水凝縮器への ポンプダウンで停止することとする。

5.6.3 蕃冷システムの設計指針

回収した冷熱の余剰分を蓄冷するシステムについて、蓄冷容量の決め方、冷熱回収シス テム、空調システムとの接続方法についての指針を述べる。ここでは蓄冷方式そのものに ついては 5.5 節で検証した温度成層型を前提とする。

冷熱回収・蓄冷システムの系統図の例を図 5.6.3 に示す。

図 5.6.3 蓄冷システムの系統図例

(1) 冷熱回収システムとの接続

5.4節で実証したように、冷熱回収熱交換器と空調システムとの接続はバッファタン クを介しておこなうこととする。蓄冷槽は空調システムと並列に接続し、空調システム で消費しない回収冷熱を流量比の形で分配して蓄冷する。蓄冷槽は、冷熱回収システム のバッファタンクと並列に接続する。

接続例を以下に示す。この例では回収冷熱が空調システムの消費冷熱量よりも大きい ことを前提とする。

蓄冷時のフロー

- ② 空調システムの運転モードが冷媒液のポンプ循環冷凍サイクルなどの低消費電力の運転に切り替わり、回収冷熱のうち空調システムの消費分がさらに減少する。
- ③ さらに系全体が温度低下し、冷熱回収媒体の温度が凍結保護となる最低温度に達すると、蓄冷槽の出入口弁を開け、余剰分に応じた流量を蓄冷槽に回す。蓄冷速度はこの流量により決まる。
- ④ 蓄冷槽の出口温度が 5.5 節で説明する送水限界温度まで低下すると、蓄冷槽の出入 口弁を閉じる。
- ⑤ 冷熱回収媒体の温度が凍結保護となる最低温度まで低下する場合は、冷熱回収熱交換器へのLNG供給量を絞る。
- ⑥ 蓄冷槽への侵入熱により蓄冷槽内の温度上昇がある場合は、ある一定温度上昇した ときに再度蓄冷槽の出入口弁を開いて内部の媒体の循環入れ替えをおこない、蓄冷 のやり直しをすることも可能とする。

図 5.6.4 蓄冷時の系統図例

放熱時のフロー

- LNGの供給が停止するなど何らかの理由で冷熱回収が停止すると、系全体の温度が 上昇していく。
- ② 系全体の温度と蓄冷槽内の出口(下端)温度とを比較し、その差が閾値を超えると 蓄冷槽の出入口弁を開とし、バッファタンクの出入口弁を閉として空調システムへ の冷熱供給元を切り替える。
- ③ 蓄冷槽内の容量分の循環が一回終了すると、その後、蓄冷槽と空調システムを循環 する冷熱回収媒体の温度は空調システムの負荷により上昇していき、冷熱回収媒体 の温度が海水温度まで上昇すると、空調システムは従来の海水冷却運転へ切り替わ る。
- ④ この間でもLNGの供給が再開復帰し、冷熱回収が可能になれば、この状態のまま冷熱回収熱交換器とバッファタンク間で冷熱回収媒体を循環させて冷やし込みをおこない、空調システム側の循環媒体との温度が逆転すれば、蓄冷時のフローに戻る。

図 5.6.5 蓄冷時の系統図例

(2) 蓄冷温度の設定

蓄冷槽の容積あたりの蓄冷量を増やすため、蓄冷温度はできるだけ低い方がよい。上述の接続例においては、蓄冷時の蓄冷槽入口温度は冷熱回収熱交換器の凍結防止のための冷熱回収媒体下限温度とほぼ等しくなる。冷熱回収媒体が水の場合は下限温度を 5℃、 ブラインの場合は下限温度を -10℃ とする。

(3) 蓄冷槽の容量の決定

蓄冷槽容量の決定においては、蓄冷分で運転可能となる時間を基準に容量を決める場合と、蓄冷槽の設置スペースの制限により容量を決める場合とが考えられる。ハイブリッド空調装置である名目上、冷熱が利用できない場合は消費電力削減効果がなくなるだけで、従来の海水冷却方式により空調運転は継続可能である。したがって、蓄冷利用分に相当する消費電力量、蓄冷槽設置スペース、初期投資コストなどのトータル的な視点で蓄冷槽の容量は決定されることになる。

また、蓄冷槽の容量決定においては、5.5節における蓄冷槽の蓄熱効率と、侵入熱量 による蓄冷槽内の温度上昇分を考慮する。

蓄冷槽の容積の決定要因

- ② 蓄冷槽の設置スペース

蓄冷分での運転可能時間については、主機停止となる停泊中の時間が一つの目安となる。後述のモデルケースでは、停泊時間を24時間と仮定して、その間の必要蓄冷量および蓄冷槽容量について試算する。

(4) 防熱

5.5節で示した蓄冷槽へ侵入熱による温度上昇の結果にあるように、蓄熱槽の防熱は 冷熱利用の効率を上げるためには必須である。5.5節における考え方にもとづけば、相 似の蓄冷槽形状で周囲温度が40℃のとき、防熱材厚さを50mmとすれば、同様に2~3℃ の温度上昇で抑えることができる。

5.6.4 モデルケースにおける新規空調システムの設計とエネルギー効率の試算

(1) モデルケース

モデルケースに選定した船舶の仕様を表 5.6.4 に示す。船は一般商船とし、主機出 力は 10000 PS とした。主機出力とLNGの低位発熱量から、LNGの最大流量は 1.0 t/h と した。空調負荷は、弊社の空調装置の納入実績から 100 kW とした。

項目	単位	値
船の種類	-	一般商船
主機出力	PS	10000
LNG の最大流量	t/h	1.0
LNG の供給圧力	MPa(abs)	0.4
空調負荷	kW	100

表 5.6.4 モデルケースに選定した船の仕様

冷熱回収熱交換器の気化ガス出口温度を -30℃ として、設定した 1.0 t/h の LNG の 冷熱をすべて回収すると、回収熱量は 199 kW となる。

モデルを単純化するため、LNGの流量および空調負荷は一定とする。また、海水温度は 32℃ で一定とする。

(2) 冷熱回収熱交換器の設計

冷熱回収熱交換器は上述の 1.0 t/h すべての熱量を回収するものとする。空調装置の 消費冷熱量は回収冷熱量よりも十分小さいため、系全体を温度低下させて、空調装置を 冷媒液のポンプ循環冷凍サイクルで運転させることが可能である。冷熱回収媒体はブラ インとして、-10℃ のブラインを回収する。冷媒液のポンプ循環冷凍サイクルへ移行 して冷熱回収媒体がこの最低温度まで到達すれば、回収冷熱は余剰となる。

このときの冷熱回収熱交換器の主な仕様を表 5.6.5 に、外形図を図 5.6.6 に、予想性 能曲線を図 5.6.7 に示す。冷熱回収熱交換器の許容圧力損失は 10 kPa とし、50%×2 台の構成とした。

冷熱回収システムの系統を図 5.6.1 に示す(5.6.1 節を参照)。冷熱回収媒体の搬送は 125A の配管サイズとなり、空調装置までの距離にもよるが、搬送ポンプは 11 kW 出力と仮定できる。

	項目	単位	伝熱管側	シェル側
	法体		LNC	ナイブライン Z1
	{ЛС ? ?>	_	LING	46 w%
運	圧力	MPa(abs)	0.4	—
転条	流量	t/h	0.5	20
件	入口温度	°C	-143	-5
	出口温度	°C	-33	-10
	交換熱量	kW	98	
	種類		Uチョ	ューブ
伝	材質	_	SUS3	04TP
然管	外径	mm	10	0.5
	伝熱面積	m ²	3	1
3.4	材質	_	SUS304TP	
ノエッ	外径	mm	508	
12	長さ	mm	20	00

表 5.6.5 冷熱回収熱交換器の主な仕様

図 5.6.6 冷熱回収熱交換器の外形図

図 5.6.7 冷熱回収熱交換器の予想性能曲線

(3) 空調装置の設計

空調負荷100kWに対し、冷却能力を106kWとして空調装置の計画をおこなった。また、 採用する運転モードは冷媒液のポンプ循環冷凍サイクルとし、5.6.2節で述べたように、 冷媒液のポンプ循環冷凍サイクルは低圧縮比冷凍サイクルとの併用となる。空調装置の 仕様表を表 5.6.6に、外形図を図 5.6.8に示す。冷媒液ポンプの動力は計算で得られ る軸動力に、ポンプ効率と本事業で得た補正係数を織り込み、冷却水温度の運転切り替 え条件を本事業の試作機と同様とした場合の空調装置の予想性能曲線を図 5.6.9、図 5.6.10に示す。

図 5.6.8 装置の外形図

表 5.6.6 空調装置の仕様表

		単位	海水冷却	低圧縮比 冷凍サイクル	冷媒液のポンプ 循環冷凍サイクル	備考
必捕	種類	_	R404A			
仰殊	流量	kg/h	3200	2538	2275	
凝縮	温度	°C	40	20	3	
蒸発	温度	°C		5		
過熱	熟度	K	8 0.5			
過冷	·却度	K		1		
冷却	能力	kW		106		
動力		kW	31.5	14.4 0.67		
凝縮埶量		kW	144.4	126.4	111.3	
幅		mm		3600		
風行き		mm		2300		
高	12	mm	2200			
	ُ ₽	kø	3500			
	「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	118				
/ ـــــــ /	瓜 称出力	ĿW	26			
電動機		KW 20				
冷柑液	ポンプ	11	キャント		ハンバータ抜載	
113/11/	「「「「「「「「「」」」	1 <i>z</i> W				
電動機		Δ		2		
		Π		0		
海水凝縮器			シェルアント チューブ式	-		
必也	種類		海水	-		
	入口温度	°C	32	-		
们和小小	出口温度	°C	36.5	-		
	流量	m3/h	27.5	_		
	種類		ローフィン チューブ	-		
仁劫竺	材質		アルミブラス	-		
石然官	有効長	mm	1550	_		
	本数		140	_		
	伝熱面積		32.8	_		
低温凝縮器				シェルアンドチューブ式		
	<u>新聞</u>		_	+イブライン/71 46w%		
冷却水	入口温度	°C	_	14.4	-5	
	出口温度	°C	_	17	-2.6	
			_	45.4	45.4	
		m0/ 11	_	10.1	ィンチューブ	
仁劫卒			_	アルミブラス		
		mm		1550		
石水目	<u></u>	111111		240		
	<u> </u>			<u> </u>		
			電子膨張开 ×2ケ			
然允岙			ノレートノイン式			
材貨			1 11111111111111111111111111111111111			
		0/·	多翼型			
		m3/m1n	230			
全静圧		kPa	2.45			
送風機用	風機用 呼称出力 k₩ 15					
電動機	定格電流	А		25		

図 5.6.9 空調装置の予想性能曲線 冷却水温度と動力の関係

図 5.6.10 空調装置の予想性能曲線 冷却水温度と成績係数 COP の関係

空調装置単体でのエネルギー効率を海水冷却運転との比較で表わすと、動力は低圧 縮比冷凍サイクルで最大 63%の削減、冷媒液のポンプ循環冷凍サイクルで 98%の削減と なる。成績係数は、冷却能力を一定(106kW)として計算し、低圧縮比冷凍サイクルで 2.6倍、冷媒液のポンプ循環冷凍サイクルで 46.5倍となる。低圧縮比冷凍サイクルの 効果は試験機とほぼ同じだが、冷媒液のポンプ循環冷凍サイクルの効果は、試験機よ りも大幅に向上している。これは、冷媒循環量が増加し、冷媒液ポンプが効率のよい ポイントで運転できるためである。 (4) 蓄冷槽の設計

初期の蓄冷温度は冷熱回収温度と同じ -10℃ とする。また、蓄冷分の消費時間を 24 h とする。

放熱時、蓄冷槽を1回循環する間は -10℃ で空調システムへ供給し、その後、蓄冷 槽と空調システム間で再循環させながら、海水温度と同じ 32℃ まで温度上昇するまで、 蓄冷分を利用する。

このとき、空調装置における冷媒搬送動力はブライン温度の温度上昇に伴って運転モ ードの切り替わり、さらなる温度上昇で動力は増加していく。

図 5.6.11 蓄冷分の利用イメージ

蓄冷槽の主な仕様を表 5.6.7 に示す。船内の空間を有効利用するため、蓄冷槽は角 型タンクを採用した。

	項目	単位	値	
運転条件	初期温度	°C	30	
	蓄冷温度	°C	-10	
	送水限界温度	°C	-5	
	ブライン流量	t/h	2	
形状	体積	m ³	80	
	幅(内寸)	m	4	
	長さ (内寸)	m	5	
	高さ (内寸)	m	4	
	表面積	m ²	120	
	入口管内径	mm	130.8	
防埶	防熱材	_	ウレタン	
	防熱厚さ	mm	100	
	熱伝導率	W/m·K	0.03	
	表面の熱伝達率	$W/m^2 \cdot K$	8	
	熱通過率	W/m² ⋅ K	0.29	
	熱容量	GJ/K	0.30	
蕃冷量	名目的な蓄冷量	GJ	12	
	容積効率		0.99	
	蓄冷時間	h	45	
	冷熱利用時間	h	24	
	外気温	°C	40	
	侵入熱	GJ	0.41	
	利用可能な冷熱量	GJ	11.5	

表 5.6.7 蓄冷槽の主な仕様

(5) 全体系統図

前述の設計指針および設定したタイプシップに対する各要素を接続した全体系 統の例を図 5.6.12 に示す。

図 5.6.12 全体系統図の例

(6) エネルギー効率の試算

空調装置を運転するための各運転モードにおける入力電力を下図に示す。冷媒搬送にかかる動力に、空調装置としての送風機動力および冷熱回収媒体搬送のポンプ動力を足したものをトータルの入力電力とする。冷熱回収媒体の搬送のポンプ動力の増加はあるものの、冷媒液ポンプ運転では40%の電力削減を達成できる。

図 5.6.13 エネルギー効率の試算

6. 平成26年度の事業内容のまとめ

平成26年度の事業計画は全て終了し、以下の成果を得た。

(1) 冷熱回収熱交換器の試作

前年度に決定したシェル内部構造を採用してシェルアンドチューブ型の冷熱回収熱交換器の試作では最終的にほぼ理論通りの回収冷熱量を得ることができた。また、本年度の 試作で得られた情報を理論解析に織り込み、伝熱管に細径のUチューブを採用した冷熱回 収熱交換器のLNGを冷熱源とした場合の予想能力曲線を作成した。

伝熱管の着氷が成長して運転限界に達したときの挙動を確認し、LNGの出口温度および ブラインの圧力損失(流量を一定に保つ制御を行っていない場合は流量)を監視すれば、 冷熱回収熱交換器をブラインの凍結による破損から保護できると判断する。

構造的には、伝熱管の径を細く、かつ伝熱管のピッチを、着氷を考慮した上でできる だけ狭くすることによって、熱交換器の質量および体積を前年度の約半分にすることが でき、大幅な合理化、小型化を達成した。

(2) 冷媒液のポンプ循環冷凍サイクルの試験用空調装置の試作

試験用空調装置の試作機として、チラーユニットを製作し、冷媒液のポンプ循環冷凍 サイクルでの運転状態の確認、および従来サイクルに対する動力の削減率を検証した。 低温のブラインを利用することで、凝縮温度と蒸発温度が従来サイクルと逆転した冷媒 液のポンプ循環冷凍サイクルを実現し、理想的な運転となった。冷却能力は、電子膨張 弁の過熱度制御により、冷媒循環量は調整され、設計条件の冷却能力を満足することが できた。冷却水温度が-5℃の場合、冷却能力は 1.3 倍、冷媒循環のための動力は従来 比で 87% の削減、装置の効率を表す成績係数 COP は、従来比で 10.5 倍となった。

(3) 要素技術を組み合わせた空調装置の試作

要素技術を組み合わせた空調装置として、得られる低温冷熱の温度によって圧縮機サ イクルと冷媒液のポンプ循環冷凍サイクルを切り替える試験用空調装置を試作して、運 転状態の確認をおこなった。ブラインチラーを使用した試験結果より、起動時や切り替 え時に一時的な冷却能力の低下や、効率の低下がみられたが、十分に許容できる範囲で あり、各サイクルへの切り替え運転は問題なくおこなうことができた。また、動力の削 減、エネルギー効率の向上も確認できた。さらに、冷熱回収熱交換器を使用した試験結 果より、タンクを使用し、各機器へのブライン流量差を吸収することで、ブラインチラ ーと同様に、問題のない切り替え運転をおこなうことができた。各機器の交換熱量とタ ンク容量から、ブラインの温度変化をある程度予測することができることを確認し、全 体設計のための知見を得ることができた。
- (4) 冷熱の切り替え運転試験装置の試作
 - 海水を冷却源とする海水凝縮器と低温冷熱を冷却源とする低温凝縮器を切り替えて利 用する試験用空調装置を試作して、運転状態の確認をおこなった。試験運転の結果、そ れぞれの凝縮器へ問題無く切り替えができており、切り替え時も一定の冷却能力を維持 していた。運転の起動と停止を海水冷却運転でおこなうことにより、低温冷熱の状態に よらない安定した運転が可能となった。結果的に、低温冷熱を利用した各サイクル(低圧 縮比冷凍サイクル、冷媒液のポンプ循環冷凍サイクル)への移行をスムーズにおこなうこ とができ、空調装置としてのエネルギー効率の向上が可能となる。
- (5) ブラインによる冷熱回収・蓄冷試験用装置の試作
- ブラインによる蓄冷試験用装置として蓄冷槽を試作し、蓄冷システムの評価基準とな る容積効率および侵入熱を評価した。試験の結果、容積効率および侵入熱はほぼ理論解 析どおりとなり、本手法を用いて実用時の蓄冷システムを設計できることが確認できた。
- (6) 新規空調装置およびシステム全体の設計指針のまとめ
- 2年間の本事業における実施結果をベースとして、実船に適用可能な新規空調装置お よびシステム構成の各要素技術(冷熱回収熱交換器、低温凝縮器、低圧縮比冷凍サイク ル、冷媒液のポンプ循環冷凍サイクル、冷媒過冷却器)の設計指針の整理・取りまとめ をおこなった。
- (7) エネルギー効率の試算

冷媒搬送にかかる動力に、空調装置としての送風機動力および冷熱回収媒体搬送のポ ンプ動力を足したものをトータルの入力電力とした場合、冷熱回収媒体の搬送のポンプ 動力の増加はあるものの、冷媒液ポンプ運転では40%の電力低減を達成できる。

本システムを実際のLNG燃料船への対応、および既存のLNG船への搭載し実用化を考 えた場合、各船級社の適用規則を満足することと冷熱回収熱交換器を製造するための工 場認証(設備、資格など)の要否と内容調査し、必要であれば取得することが課題と考 えられる。本事業終了後、更に1年間継続して本課題への取り組みを行い、平成28年 からの商品化を目指す。また商品化により地球環境への貢献、運航費用の低減、本シス テムを使用した新技術機器の創出を期待したい。

7. 本事業における最終目標の達成状況

2年間に亘る技術開発の成果を、当初目標からの達成度で自己評価をすると、下記に示す ように、いずれの項目も100%の達成度となった。

- (1) 冷熱回収媒体の搬送のポンプ動力の増加はあるものの、冷媒液ポンプ運転では現状の 空調装置に対し当初目標(30%低減)を上回る40%の電力低減することが可能である。
- (2) LNG の余剰冷熱をブラインにより回収・蓄冷し、再利用するシステムの構築と設計 手法の確立をした。

(3) これまでに実施してきた新規の要素技術(冷熱回収熱交換器、低温凝縮器、低圧縮 比冷凍サイクル、冷媒液のポンプ循環冷凍サイクル、冷媒過冷却器)を組み合わせ、 実船に適用可能な、ハイブリッド空調装置およびシステムの構成を確立した。

8. 報告書作成

平成26年度の委託契約書に則り、本報告書を作成した。

[参考文献]

- (1) 日本機械学会編,気液二相流技術ハンドブック,改訂(2006),コロナ社
- (2) 日本機械学会編, 伝熱工学資料, 改訂 5 版 (2009), 日本機械学会
- (3) 日本海事協会,ガス燃料船ガイドライン, 2012年1月(2012)
- (4) 満田正彦,中岡威博,吉田龍生,江頭慎二,"冷水対応型 LNG 気化器の開発", 第 43 回日本伝熱シンポジウム講演論文集(2006)
- (5) 吉田龍生,中川潤一,滝口好美,大塩章,"LNG サテライト基地における冷熱の有効利用について",神戸製鋼技報, Vol. 53, No. 2 (2003)
- (6) 高橋勝國,斎藤敏雄,柳島淑隆,神谷祥二,老固潔一,岩田章,増井喜健,"水素二相 流の圧力損失と膜沸騰伝熱特性",低温工学,Vol. 15,No. 2 (1980)
- (7) 日本船舶技術研究協会、"舶用 LNG 気化器の実用化に関する調査研究「船舶搭載用気化 設備の実用評価試験」成果報告書"(2012)
- (8) 神戸製鋼,温水バス式気化器,日本国特許第 3965012 号 (2000)
- (9) 神戸製鋼, 温水バス式気化器, 日本国特許 特開 2010-038331 (2010)
- (10) 神戸製鋼, 温水バス式気化器, 日本国特許 特開 2011-002120 (2011)
- (11) 日本冷凍空調学会編,初級標準テキスト 冷凍空調技術,改訂(2009),日本冷凍空調 学会
- (12) 日本冷凍空調学会編, SI による上級冷凍受験テキスト,改訂(2007),日本冷凍空調学 会神戸製鋼,温水バス式気化器,日本国特許 特開 2011-002120 (2011)
- (13) 尾花英朗,熱交換器設計ハンドブック,改訂(1974),工学図書
- (14) 化学工業会編, 蓄熱技術 理論とその応用 第 I 編 蓄熱技術概論 顕熱蓄熱 (1996), 信 山社出版
- (15) 辻本誠,相良和伸,中原信生,"蓄熱槽に関する研究 第1報 成層型蓄熱槽の槽内混合
 機構に関する実験的研究",空気調和・衛生工学会論文集 No. 16 (1981)
- (16) 丹羽英治,関本芳孝,相良和伸,猪岡達夫,"温度成層型蓄熱槽の蓄熱性能最適化に関する研究",空気調和・衛生工学会論文集 No. 56 (1994)

[学会発表論文]

(1) 古林義弘,山田一俊,西等,大澤昭一,菊川俊暢,田中隆博,曽我部仁,田中誠,山本郁人,"LNG と海水を冷熱源とする Hybrid 空調システムの開発",日本船舶海洋工学会講演会論文集,第14号,pp.491-495 (2012)

- (2) 古林義弘,山田一俊,大澤昭一,田中誠,山本郁人,"LNGCボイルオフガスの冷熱利用 による高過冷却冷媒空調",日本船舶海洋工学会講演会論文集,第15号,pp.449-450 (2012)
- (3) 古林義弘,山田一俊,大澤昭一,田中誠,山本郁人,"冷媒の凝縮温度低下にLNGC BOG を利用する高効率空調システム",日本船舶海洋工学会講演会論文集,第16号, pp. 265-260 (2013)
- (4) 古林義弘,山田一俊,大澤昭一,田中誠,山本郁人,渡部敬士,"LNG の冷熱利用による自然冷媒 CO2 冷媒空調システム",日本船舶海洋工学会講演会論文集,第 17 号, pp. 493-494 (2013)
- (5) 古林義弘,大町輝久,山田一俊,西等,大澤昭一,田中誠,山本郁人,渡部敬士,"新 しい空調システム: 圧縮機に代わるポンプによる冷媒循環",日本船舶海洋工学会講 演会論文集,第18号, pp. 375-376 (2014)

[特許]

潮冷熱株式会社,LNG の冷熱および海水を用いた船舶の空気調和システム,日本国特許第 5317000号(2013)

潮冷熱株式会社,(一社)日本舶用工業会,LNGの冷熱を用いた船舶の空気調和機の冷媒循 環装置,(出願中)

〒105-0001

「この報告書は BOAT RACE の交付金による日本財団の助成金を受けて作成しました」

(一社)日本舶用工業会

東京都港区虎ノ門一丁目13番3号(虎ノ門東洋共同ビル) 電話:03-3502-2041 FAX:03-3591-2206 http://www.jsmea.or.jp