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Effect of ex sivo—induced myeloid—derived suppressor cells from bone marrow in a mouse corneal
transplantaticn model

FHAE R wMXEL vl wERL a

1. ARBEQ)

To investigate the effect of bone marrow (BM) derived myeloid—derived suppressor cells (BM-MDSCs) on
T cell proliferative response on allogeneic stimulation in vitro.

1) B # (Goal)

To investigate the impact of bane marrow myeloid—derived suppressor cells (BM-MDSCs) on allogeneic
stimulation in vitro and effect on the survival of mouse corneal transplantation in vivo.

2) B B& (Approach)

Corneal transplantation, as known as corneal grafting, is the most common surgery worldwide to treat
various corneal diseases which sause severe vision loss. Although it is well-known that cornea has the
immune privilege in the transplantation, there are still risk factors, such as neovascularization,
inflammatory and infection, that could result in graft failure. It was reported that in some high—risk
patients with inflamed and vascularized host beds, the graft failure could be 41% to 100%. [1-4] The
immunologic rejection is considered as the main cause of corneal allotransplantation failure.[5] Medical
therapy such as repeated surge-y of corneal transplantation, pharmacotherapy, artificial cornea and
bioengineered cornea provide diverse methods to improve survival of transplantation, however, the major
therapy nowadays come from donor corneal transplantation, the main inevitable problem is to reduce the
allograft immune rejection. Myeloid—derived suppressor cells (MDSCs) are heterogeneous population of
myeloid cells. They were regarded as an important role to facilitate tumor progression by immune
suppression. It was observed that MDSCs could suppress T cell-mediated immune response.[6] These
features immediately arouse intense interests of their regulatory function in organ transplantation.[7,8]
Few studies were reported abort the effect of MDSCs in corneal transplantation and the suppressive
mechanism remains unknown. Therefore, we investigate the function of MDSCs in allogeneic stimulation
via vitro and their effect on mouse corneal allotransplantation survival.

3) #t # &£ 75 i% (Materials and methods)

BM cells were procured from C57BL/6J (B6) mouse and cultured with interleukin (IL)-6 and granulocyte
macrophage—colony stimulating factor (GM—CSF) for 4 days to generate Gr1+CD11b+ BM-MDSCs. Mixed
lymphocytes reaction (MLR) was performed by using BALB/c mouse lymphocytes, B6 mouse splenocytes
(30Gy radiated) as simple allogeeic stimulation assay, and using B6 mouse BM—MDSCs to assess its
effect on T cell proliferation anc expression of inflammation cytokines. The T cell proliferation were
assessed by thymidine uptake. The production of interferon— ¥ (IFN- 7 ) and IL-2 using enzyme-linked
immunosorbent assay (ELISA). The ratio of regulatory T cells (Treg) in BALB/c mouse lymphocytes was
investigated by using flow cytometric analysis after MLR. BALB/c mouse lymphocytes were labeled by
using carboxyfluorescein diacetate succinimidyl ester (CFSE) to trace their proliferation in MLR.

4) EER#E R (Results)

Co—cultured with GM—CSF and _L—6 significantly boosted the number of Gr1+CD11b+ BM—-MDSCs
compared with the control (P < 0.05). Comparing with simple allogeneic stimulation assay, BM—MDSCs
significantly inhibited T cell proliferation and expanded the ratio of regulatory T cells (P < 0.05). BM—

MDSCs significantly decreased ~he IFN—yproduction, whereas IL-2 production was increased (P < 0.05).
CFSE-labeling assay showed that the BM—MDSCs significantly reduced the frequencies of CSFElow cell
compared with BM—MDSCs absent assay (P < 0.05).

5) #& 22 (Discussion)
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Mandibular Malignant Fibrous Histiocytoma:a Case Report
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LncRNA DANCR promotes the proliferation,
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migration, and invasion of tongue squamous
cell carcinoma cells through miR-135a-5p/KLF8

axis

Ying Zheng', Bowen Zheng', Xue Meng?, Yuwen Yan', Jia He' and Vi Liu'"

Abstract

TSCC.

Background: Tongue squamous cell carcinoma (TSCC) is a most invasive cancer with high mortality and poor prog-
nosis. It is reported that INcRNA DANCR has implications in multiple types of cancers. However, its biological role and
underlying mechanism in TSCC progress are not well elucidated.

Methods: Our present study first investigated the function of DANCR on the proliferation, migration and invasion
of TSCC cells by silencing or overexpressing DANCR. Further, the miR-135a-5p-Kruppel-like Factor 8 (KLF8) axis was
focused on to explore the regulatory mechanism of DANCR on TSCC cell malignant phenotypes. Xenografted tumor
growth using nude mice was performed to examine the role of DANCR in vivo.

Results: DANCR knockdown reduced the viability and inhibited the migration and invasion of TSCC cells in vitro,
while ectopic expression of DANCR induced opposite effects. In vivo, the tumor growth and the expression of matrix
metalloproteinase (MMP)-2/9 and KLF8 were also blocked by DANCR inhibition. In addition, we found that miR-
135-5p directly targeted DANCR, which was negatively correlated with DANCR on TSCC progression. Its inhibition
reversed the beneficial effects of DANCR silence on TSCC malignancies. Furthermore, the expression of KLF8 evidently
altered by both DANCR and miR-135a-5p. Silencing KLF8 using its specific siRNA showed that KLF8 was responsible
for the induction of miR-135a-5p inhibitor on TSCC cell malignancies and MMP-2/9 expression.

Conclusions: These findings, for the first time, suggest that DANCR plays an oncogenic role in TSCC progression
via targeting miR-135a-5p/KLF8 axis, which provides a promising biomarker and treatment approach for preventing

Keywords: DANCR, Tongue squamous cell carcinoma, miR-135a-5p, KLF8, MMP

Background

Tongue squamous cell carcinoma (TSCC) is a major type
of head and neck squamous cell carcinoma (HNSCC)
with high recurrence rates, increased proliferation and
metastasis, and poor prognosis [1, 2]. Despite of signifi-
cant advances in the prevention and treatment, the sur-
vival rates of TSCC patients are still low [3]. It is identified
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that the invasion and migration mainly contribute to the
progression of tumors. Therefore, it is urgent that devel-
oping novel therapeutic strategies for TSCC through the
exploration of the underlying molecular mechanisms.
LncRNAs are a group of long non-coding RNAs with
more than 200 nucleotides in length. Numerous reports
has shown that IncRNAs play important roles in wide
ranges of biological processes, including cell prolifera-
tion, differentiation, apoptosis, migration and invasion
[4—6]. Especially, multiple IncRNAs has been found to
be closely implicated in the tumorigenesis and progres-
sion of TSCC. For example, high-expression of IncRNA

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/

publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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AFAP1-AS1 in TSCC tumor tissues enhances tumor
progression via the activation of Wnt/p-catenin signal-
ing pathway [7]. NKILA serves as a crucial determinant
of TSCC metastasis to reduce the migratory and invasive
cells through inhibiting the process of epithelial-mes-
enchymal transition (EMT) [8]. Interestingly, IncRNA
DANCR (differentiation antagonizing non-protein cod-
ing RNA) has been noticed to suppress epidermal cell
differentiation [9] and improve hepatocellular carcinoma
self-renewal [10]. DANCR is also taken as an oncogenic
IncRNA for several cancers, such as prostate cancer [11],
gastric cancer [12] and colorectal cancer [13]. However,
the distinct function of DANCR in TSCC was not well
understood.

MicroRNAs (miRNAs), a class of small non-coding
RNAs, are shown to modulate the expression of target
genes. Recent studies have revealed that miR-135a-5p is
the main regulator of tumor invasion and metastasis [14,
15]. In non-small cell lung cancer (NSCLC), miR-135a-5p
is demonstrated to inhibit cell migration and invasion
through targeting Kruppel-like Factor 8 (KLE8) [16]. As
we know, KLF8 has been widely confirmed to partici-
pate in the regulation of cell cycle progression, transfor-
mation, EMT and invasion [17-21]. Given that DANCR
was predicted to have putative binding sites with miR-
135a-5p through the analysis of online bioinformatics,
we thus speculated that DANCR might affect the devel-
opment and progression of TSCC by regulating miR-
135a-5p/KLE8 axis.

To improve the understanding of DANCR effects
on TSCC malignancies, CAL-27 and TCa-8113 cells
with DANCR silence, and SCC9 and TSCCA cells with
DANCR overexpression were constructed. Then the
effects of DANCR on the proliferation, migration and
invasion of TSCC cells were determined. Further, miR-
135a-5p/KLF8 axis was focused to explore the molecu-
lar mechanism by which DANCR promoted TSCC
progression.

Methods

Cell culture and reagents

In our experiments, four human TSCC cell lines (SCC9,
TSCCA, TCa-8113 and CAL-27 cells) were used. SCC9
cells (Cellcook, Guangzhou, China) were cultured in
DMEM/F12 medium supplemented with 10% fetal
bovine serum (FBS; SH30084.03, Hyclone, South Logan,
UT, USA); TSCCA cells (Procell, Wuhan, China) were
maintained in DMEM medium (12100-46, Gibco) con-
taining with 10% FBS; TCa-8113 and CAL-27 cell lines
(Procell, Wuhan, China) were cultured in RPMI-1640
medium (31800-014, Gibco, Gaithersburg, MD, USA)
supplemented with 10% FBS. All these cell lines were cul-
tured in a standard environment at 37 °C with 5% CO,.
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MiR-135a-5p mimics/inhibitor and corresponding nega-
tive control (NC) mimics/inhibitor were purchased from
JTS Scientific (Beijing, China).

Construction of siRNAs and shRNAs

The sequences of siRNAs (5-3') targeting human
DANCR were designed as follows: si-DANCR-1 sense
GUUGACAACUACAGGCACATT and antisense UGU
GCCUGUAGUUGUCAACTT; si-DANCR-2 sense CUA
GAGCAGUGACAAUGCUTT and antisense AGCAUU
GUCACUGCUCUAGTT. The NC siRNA sequences
(5'-3") were: sense UUCUCCGAACGUGUCACGUTT
and antisense ACGUGACACGUUCGGAGAATT. Then
shRNAs targeting DANCR and corresponding NC were
constructed by pRNAHI1.1 plasmid vectors (Genscript,
Nanjing, China).

Furthermore, we also designed the interfering
sequences (5'-3’) for human KLF8 as follows: si-KLF8
sense CGAUAUGGAUAAACUCAUATT and antisense
UAUGAGUUUAUCCAUAUCGAC. The corresponding
NC siRNA sequences (5'-3') were designed as follows:
si-NC sense UUCUCCGAACGUGUCACGUTT and
antisense ACGUGACACGUUCGGAGAATT.

Construction of overexpression plasmids

A pair of specific primers (forward 5-CAAGGATCC
GCCCTTGCCCAGAGTCTTCC-3' and reverse 5-CCG
CTCGAGGTCAGGCCAAGTAAGTTTAT-3') was used
to amplify human DANCR (NR_024031.2). Then the
amplified products were inserted into pcDNA3.1 plas-
mids (V790-20, Invitrogen, Carlsbad, CA, USA) between
BamHI and Xhol restriction enzyme sites to induce the
overexpression of DANCR. The empty pcDNA3.1 vector
was used as control.

Cell transfection

When cells reached at 70% of confluence, siRNAs or shR-
NAs targeting DANCR were transfected into CAL-27
and TCa-8113 cells, and ectopic expression of DANCR
were transfected into SCC9 and TSCCA cells by the
mediation of Lipofectamine 2000 reagent (11668-019,
Invitrogen) following the manufacturer’s instructions. All
experiments were performed at 48 h post transfection.

In addition, miR-135a-5p mimics or NC mimics was
transfected into CAL-27 or TCa-8113 cells, and its inhib-
itor or NC inhibitor was transfected into SCC9 cells as
mentioned above to overexpress or silence miR-135a-5p.
Furthermore, the co-transfection of miR-135a-5p inhibi-
tor and si-DANCR or si-KLF8 was also mediated by
Lipofectamine 2000.
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Quantitative real-time polymerase chain reaction
(qQRT-PCR)

Total RNAs in TSCC cell lines were extracted with
RNAsimple Total RNA Kit (DP419, TIANGEN, Beijing,
China) and reverse-transcribed into ¢cDNA templates
using M-MLV reverse transcriptase (NG212, TIAN-
GEN). The designed specific primer sequences were syn-
thesized by Sangon Biotech (Shanghai, China) and shown
as follows (5'-3’): miR-135a-5p, RT GTTGGCTCTGGT
GCAGGGTCCGAGGTATTCGCACCAGAGCCAACT
CACAT, forward GCCGTATGGCTTTTTATTCCTA
and reverse GGTGCAGGGTCCGAGGTATT; U6, RT
GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCA
CCAGAGCCAACAAAATATGG, forward GCTTCG
GCAGCACATATACT and reverse GGTGCAGGGTCC
GAGGTATT; DANCR forward ACCCTCCTGCTT
CCCTC and reverse CCCGAAACCCGCTACAT; KLF8
forward TCATTGGAGGAGATGGTAA and reverse
GCTGCTGGTTCTTGCTGT; GAPDH forward GAC
CTGACCTGCCGTCTAG and reverse AGGAGTGGG
TGTCGCTGT. Subsequently, the mixture of cDNA tem-
plates, specific primers, SYBR Green reagent (SY1020,
Solarbio, Beijing, China) and Taq PCR MasterMix
(KT201, TIANGEN) were used to amplify target genes by
qRT-PCR analysis on Exicycler 96 PCR system (Bioneer,
Daejeon, Korea). GAPDH was normalized for DANCR
and KLF8 expression, and U6 was normalized for miR-
135a-5p expression. Relative expression was calculated
using the 2722¢T method.

MTT assay

TSCC cells were seeded in 96-well plates at the density of
4 x 10? cells/well for 0, 24, 48 or 72 h, respectively. Then
cells were incubated in a complete medium containing
0.5 mg/ml MTT (KGA311, KeyGEN, Nanjing, China)
for 4 h. After dissolving in DMSO (ST038, Beyotime),
the viable cells were determined using microplate reader
(ELX-800, BIOTEK, Winooski, VT, USA) at the optical
density of 570 nm.

Wound healing assay

The wound healing assay was used to assess cell migra-
tory ability. Cells were treated with mitomycin C (M0503,
Sigma) for 1 h in a serum-free medium. Then a wound
scratch was made by a 200 pl pipette tip in the culture
plate and recorded it by phase-contrast microscopy
(IX53, Olympus, Tokyo, Japan) under 100x magnifica-
tion. Twenty-four hours later, the migratory distances
were measured with Image Pro Plus Software (Media
Cybernetics, Silver Springs, MD, USA) to calculate the
capacity of cell migration.
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Transwell assay

Transwell assay was utilized to evaluate the invasive abil-
ity of cells. Briefly, cell suspensions (2 x 10* cells/well)
were seeded in the upper chamber of 24-well Transwell
inserts (3422, Corning Incorporated, Corning, NY, USA)
pre-coated with Matrigel (356234, BD Biosciences, San
Jose, CA, USA) with serum-free medium. The lower
chamber was filled with the medium containing with 30%
FBS. After 48 h of incubation, cells in the upper cham-
ber were removed and washed in PBS twice. Then cells
were fixed in 4% paraformaldehyde and stained with 0.4%
crystal violet (0528, Amresco, Solon, OH, USA). The
number of cells in the lower chamber was observed by
phase-contrast microscope under 200x magnification.
Five fields in each image were randomly selected to count
and the invasive cell ratio was normalized to control.

Luciferase reporter assay

Bioinformatics analysis predicted that IncRNA DANCR
had putative binding sites with miR-135a-5p. The pmir-
GLO vector (E133A, Promega, Madison, WI, USA)
containing Nhel and Sall restriction enzyme sites was
applied to construct wild type (wt) or mutant type (mut)
luciferase reporter vectors for DANCR. The site-directed
mutation of DANCR was used to verify the target effects
between DANCR and miR-135a-5p. Then 293T cells
(ZhongQiaoXinZhou Bio, Shanghai, China) were seeded
in 12-well plates and co-transfected with wt-DANCR, or
mut-DANCR together with miR-135a-5p or NC mimics
using Lipofectamine 2000. Finally, the binding activity
was tested with a dual luciferase reporter assay kit (E1910,
Promega) by the calculation of Firefly luciferase activity/
Renilla luciferase activity at 48 h post-transfection.

Western blot

Total proteins from TSCC cell lines or tumor tissues were
isolated using RIPA lysate (RO010, Solarbio) containing
PMSF (P0100, Solarbio) and quantified using BCA assay
kit (PC0020, Solarbio). Then equal proteins were loaded
on the Sodium dodecylsulphate polyacrylamide gel elec-
trophoresis (SDS-PAGE) gel, and transferred onto PVDF
membrane (IPVH00010, Millipore, Billerica, MA, USA).
After washing in TBST, the membrane was incubated
with one of the following specific primary antibodies
overnight at 4 °C: MMP-2 antibody (1:500; 10373-2-AP,
Proteintech, Wuhan, China), MMP-9 antibody (1:500;
ab38898, Abcam, Cambridge, UK), KLF8 antibody
(1:1000; A16321, Abclonal, Wuhan, China) and GAPDH
(1:10,000; 60004-1-Ig, Proteintech). Subsequently, horse-
radish peroxidase (HRP)-conjugated goat anti-rabbit
antibody (1:3000; SE134, Solarbio) or HRP-conjugated
goat anti-mouse antibody (1:3000; SE131, Solarbio) was
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used to incubate with the membrane for 1 h at 37 °C. Pro-
tein signals were developed with ECL kit (PE0010, Solar-
bio) and quantified using Gel-Pro-Analyzer Software
(Media Cybernetics, Silver Springs, MD, USA). GAPDH
was used as internal control.

Xenograft tumor model analysis

The ethical approval was obtained from School of Stom-
atology, China Medical University Committee (No.
G2018007) in this study. All animal experimental pro-
cedures were performed according to the Guide for the
Care and Use of Laboratory Animals. The Balb/c-nude
mice (4-5 weeks, 18-20 g) were purchased from HuaFu-
Kang Bioscience Co. Inc (Beijing, China) and housed in
a standard environment. Stably transfected cells with
sh-DANCR or sh-NC were selected using G418 antibi-
otics (A1720, Sigma, St. Louis, MO, USA). Then, CAL-
27 cells or TCa-8113 cells with sh-DANCR or sh-NC
stable transfections were subcutaneously injected into
the right side of axilla at the density of 1 x 10° cells per
animal. Tumor volume was measured using the cali-
per every 4 days following the formula: tumor volume
(mm?) = (length x width?)/2. Tumor weight was meas-
ured when mice were killed after 25 days.

Immunofluorescence

For immunofluorescence staining, the collected tumor
tissues were fixed in paraformaldehyde, embedded with
paraffin and sectioned into 5 pum-thickness slides. Then
paraffin slides were incubated with specific primary anti-
body against KLF8 (NBP2-57740, NOVUS, Centennial,
CO, USA) overnight at 4 °C, and conjugated with FITC-
labeled goat anti-rabbit secondary antibody (A0562,
Beyotime) at room temperature for 60 min. After coun-
terstaining with DAPI, the immunopositive materials
were visualized using optical microscope (BX53, Olym-
pus) at the magnification of 400x and captured using
digital camera (DP73, Olympus).

Statistical analysis

Data were expressed as mean=+SD and analyzed using
GraphPad Prism software (San Diego, CA, USA). The
comparisons were performed using t-test or one-way
ANOVA following Bonferroni’s test. p<0.05 was identi-
fied to indicate a significant difference statistically.

Results

DANCR knockdown suppressed the proliferation,
migration and invasion of TSCC cell lines

In four different TSCC cell lines, the expression profile
of DANCR was first detected as shown in Fig. 1a. From
this chart, it was apparent that DANCR expression was
higher in CAL-27 and TCa-8113 cells than in SCC9 and
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TSCCA cells. Thus in further experiments, CAL-27
and TCa-8113 cells were used to inhibit DANCR, while
SCC9 and TSCCA cells were forced to express DANCR.
As expectation, specific siRNAs targeting DANCR sig-
nificantly decreased its levels in CAL-27 and TCa-8113
cells (Fig. 1b).

Then the effects of si-DANCRs on the prolifera-
tion, migration and invasion of TSCC cells were first
assessed. MTT assay was considered to indicate cell
proliferation, and the results showed that DANCR
knockdown reduced the viable number of CAL-27 and
TCa-8113 cells (Fig. 1c). Furthermore, it seemed that
inhibition of DANCR significantly decreased the migra-
tory and invasive ability of TSCC cells using wound
healing assay and transwell invasion assay (Fig. 1d, e).
These results indicate that DANCR knockdown may
attenuate TSCC malignancies in vitro.

DANCR overexpression promoted the proliferation,
migration and invasion of TSCC cell lines

Further, the forced expression of DANCR was used to
investigate its biological function in SCC9 and TSCCA
cells. We observed a marked increase of DANCR
expression by its overexpression plasmids in SCC9 and
TSCCA cells (Fig. 2a). Functional analysis from SCC9
and TSCCA cells indicated that the ectopic expression
of DANCR induced increments of cell viability, migra-
tory distance and invasive cell number (Fig. 2b—d). Our
data show that DANCR can enhance the proliferation,
migration and invasion of TSCC cells in vitro.

DANCR targeted miR-135a-5p to regulate KLF8 expression

in TSCC cell lines

As shown in Fig. 3a, the bioinformatics predicted
that DANCR was complementary with miR-135a-5p
(Fig. 3a), which was confirmed by dual luciferase
reporter assay. The results demonstrated that miR-
135a-5p mimics significantly inhibited the luciferase
activity of wt-DANCR, but not mut-DANCR (Fig. 3b).
Then we observed a marked increase of miR-135a-5p
level in CAL-27 and TCa-8113 cells transfected with
si-DANCR (Fig. 3c, d), but a significant reduction of
miR-135a-5p in SCC9 and TSCCA cells transfected
with pcDNA3.1-DANCR (Fig. 3e, f). In addition, KLF8
mRNA was down-expressed by knockdown of DANCR
in CAL-27 (Fig. 3g) and TCa-8113 cells (Fig. 3h), but
increased by DANCR overexpression in SCC9 (Fig. 3i)
and TSCCA cells (Fig. 3j). These data suggest that miR-
135a-5p is a direct target of DANCR, and KLF8 may
participate in DANCR-mediated regulation of TSCC
malignant phenotypes.
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Fig. 1 DANCR knockdown suppressed the proliferation, migration and invasion in vitro. a Relative expression of DANCR was detected by gRT-PCR
in different TSCC cell lines. b CAL-27 and TCa-8113 cells were transfected with siRNAs against DANCR. The relative expression of DANCR was
detected by gRT-PCR. ¢ The viability of CAL-27 and TCa-8113 cells was assessed by MTT assay. d, e The migration and invasion of CAL-27 and
TCa-8113 cells was determined using wound healing assay and transwell assay, respectively. *p <0.05, **p <0.01, ***p <0.001; &p<OA05, &&p <0.01,

8885 <0.001, versus to si-NC
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Fig. 2 DANCR overexpression promoted the proliferation, migration and invasion in vitro. a SCC9 and TSCCA cells were transfected with pcDNA3.1
vector expressing DANCR. The relative expression of DANCR was detected by gRT-PCR. b The viability of SCC9 and TSCCA cells was assessed by
MTT assay. ¢, d The migration and invasion of SCC9 and TSCCA cells was determined using wound healing assay and transwell assay, respectively.
*p<0.05 **p<0.01, **p <0.001, versus to vector
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*15<0.01, *¥p <0.001; % <0.001, versus to si-NC.

Fig. 3 DANCR targeted miR-135a-5p to regulate KLF8 expression in vitro. a Sequence alignments of DANCR with potential targeting sites of
miR-135a-5p. b Luciferase reporter assay was performed to verify the binding effect between DANCR and miR-135a-5p. c—f Relative expression

of miR-135a-5p was examined by gRT-PCR in CAL-27 cells (c), TCa-8113 cells (d), SCCI cells (e) and TSCCA cells (f). g—j Relative expression of KLF8
was detected using gRT-PCR in CAL-27 cells (g), TCa-8113 cells (h), SCC9 cells (i) and TSCCA cells (j). ***p <0.001, versus to wt-DANCR 4 NC mimics.
p <0.001, versus to Vector

MiR-135a-5p overexpression suppressed tumor cell
progression and KLF8 expression in TSCC cell lines

Then we found that miR-135a-5p expression in SCC9 and
TSCCA cells was higher than that in TCa-8113 and CAL-
27 cells (Fig. 4a). To further investigate the role of miR-
135a-5p, its specific mimics were further carried out. It
obviously confirmed that miR-135a-5p expression was
increased by its mimics in CAL-27 and TCa-8113 cells

(Fig. 4b). The results in Fig. 4c—e showed that overex-
pression of miR-135a-5p reduced viable cells, shortened
migratory distance and decreased invasive cells in CAL-
27 cells and TCa-8113 cells. In addition, KLF8 mRNA
and protein expression were also suppressed by miR-
135a-5p (Fig. 4f, g). All results indicate that miR-135a-5p
may protect against TSCC malignant phenotypes with
the involvement of KLF8 suppression.
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(See figure on next page.)

Fig. 4 MiR-135a-5p overexpression suppressed tumor cell progression and KLF8 expression in vitro. a Relative expression of miR-135a-5p in
different TSCC cell lines was examined using gRT-PCR. b Relative expression of miR-135a-5p was measured in CAL-27 and TCa-8113 cells transfected
with miR-135a-5p mimics by gRT-PCR. ¢ The viability of CAL-27 and TCa-8113 cells was measured using MTT assay. d, e The migration and invasion
of CAL-27 and TCa-8113 cells was examined using wound healing assay and transwell assay, respectively. f Relative expression of KLF8 mRNA

was detected in CAL-27 and TCa-8113 cells using gRT-PCR. g Relative expression of KLF8 protein was measured using western blot in CAL-27 and

TCa-8113 cells. *p < 0.05, **p <0.01, ***p <0.001, versus to NC mimics

DANCR knockdown repressed tumor cell progression

and KLF8 expression by targeting miR-135a-5p in TSCC cell
lines

Although miR-135a-5p had been identified to tar-
get DANCR and be beneficial for TSCC progress,
whether miR-135a-5p was responsible for the effects of
DANCR on tumor malignancies was unclear. As illus-
trated in Fig. 5a, the reduction of viable cells by DANCR
knockdown was enhanced by miR-135a-5p inhibitor.
Furthermore, inhibition of miR-135a-5p reversed si-
DANCR-mediated suppression of cell migration and
invasion (Fig. 5b, ¢). It is well-known that matrix metal-
loproteinase (MMP) family proteins are main biomark-
ers for tumor invasion and metastasis. Results in Fig. 5d
showed that the decrease of MMP-2 and MMP-9 protein
levels induced by DANCR silence was partially increased
by miR-135a-5p inhibitor. In addition, we found that the
reduction of KLF8 in si-DANCR cells was increased by
miR-135a-5p inhibitor (Fig. 5e). Together the results fur-
ther suggest that DANCR/miR-135a-5p may modulate
TSCC progression by the regulation of KLF8.

MiR-135a-5p inhibition exacerbated tumor cell progression
through activating KLF8 in TSCC cell lines

Next, we further elucidated whether KLF8 was responsi-
ble for the regulatory function of DANCR/miR-135a-5p
in SCC9 cells using its specific siRNA. Expectedly, miR-
135a-5p inhibitor-induced increase of KLF8 was sup-
pressed by the siRNA of KLF8 itself (Fig. 6a). Knockdown
of KLF8 attenuated the effects of miR-135a-5p inhibitor
on the proliferation, migration and invasion of SCC9 cells
(Fig. 6b—d). Similarly, the indicators for tumor develop-
ment and progression, MMP-2 and MMP-9 were also
inhibited by KLF8 silencing (Fig. 6e), which just proved
the alterations of tumor malignancies at molecular level.
Collectively, these findings demonstrate that KLF8 is
responsible for the regulation of DANCR/miR-135a-5p
on TSCC progression.

DANCR knockdown blocked the tumor formation in vivo
involving KLF8 activation

To test the role of DANCR in tumor growth in vivo,
CAL-27 or TCa-8113 cells were stably transfected with
shRNAs and injected subcutaneously into the right flank
of axilla of nude mice. As shown in Fig. 7a, b, it showed

that the tumor size and weight could be suppressed by
knockdown of DANCR. At molecular level, the expres-
sion of MMP-2 and MMP-9 in tumor tissues was also
reduced by DANCR inhibition (Fig. 7c). In addition, as
shown in Fig. 7d, e, both western blot and immunofluo-
rescence staining demonstrated that a remarkable down-
regulation of KLF8 was induced in tumor tissues stably
transfected with DANCR shRNA. Overall, these in vivo
results show that DANCR may activate the expression of
KLF8 and MMPs to affect TSCC tumor growth.

Discussion

Increasing IncRNAs have been revealed to be implicated
in the development and progression of various cancers,
including TSCC [7, 8, 22]. In this work, DANCR was
showed to act as an oncogenic gene to facilitate the pro-
liferation, migration and invasion of TSCC cells through
the loss or gain of DANCR. Furthermore, miR-135a-5p
was demonstrated to be complementary with DANCR
and negatively regulated by DANCR. Overexpression
of miR-135a-5p prevented the malignant phenotypes of
TSCC cells and reduced the expression of KLF8. Inhibi-
tion of miR-135a-5p mediated the protective effects of
DANCR silence on TSCC cells. KLF8 was responsible for
the regulatory role of miR-135a-5p through modulating
MMP-2/9 expression.

Previous reports showed that IncRNA DANCR was
high-expressed in esophageal cancer [23], liver cancer
[10], colorectal cancer [24], prostate cancer [11], retino-
blastoma [25] and so on, which indicated its potential
correlation with the poor prognosis of patients. Evidence
demonstrated that DANCR enhanced the migration and
invasion of prostate cancer cells or gastric cancer cells
through impeding TIMP2/3 expression [11] or IncRNA-
LET [26]. Jiang et al. suggested that the initiation and
progression of osteosarcoma was affected by DANCR
via competitively binding to miR-33a-5p [27]. In NSCLC
cells, DANCR was found to target miR-758-3p to regulate
cell proliferation, migration and invasion [28]. However,
up to now, the functional significance of DANCR in the
progression of TSCC still requires to be clarified. In this
study, the gain- and loss-of-function experiments showed
that DANCR could enhance the proliferation, migra-
tion and invasion of TSCC cells. The in vivo results fur-
ther demonstrated that inhibition of DANCR prevented
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Fig. 5 DANCR knockdown repressed tumor cell progression and KLF8 expression by targeting miR-135a-5p in vitro. a The viability of CAL-27 and
TCa-8113 cells was measured using MTT assay. b, € The migration and invasion of CAL-27 and TCa-8113 cells were detected by wound healing assay
and transwell assay, respectively. d Relative expression of MMP-2 and MMP-9 protein was determined by western blot in CAL-27 and TCa-8113 cells.
e Relative expression of KLF8 protein was detected using western blot in CAL-27 and TCa-8113 cells. *p < 0.05, **p < 0.01, ***p < 0.001, versus to
si-NC; 4p < 0.05, #p < 0.01, *&p < 0.001, versus to si-DANCR-1 + NC inhibitor
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Fig. 6 MiR-135a-5p inhibition exacerbated tumor cell progression through activating KLF8 in vitro. a Relative expression of KLF8 protein in SCC9
cells was tested by western blot. b The viability of SCC9 cells was assessed by MTT assay. ¢, d The migration and invasion of SCC9 cells was measured
using wound healing assay and transwell assay, respectively. e Relative expression of MMP-2 and MMP-9 protein in SCC9 cells was examined using
western blot. **p < 0.01, **p < 0.001, versus to NC inhibitor; ¥p < 0.05, #p < 0.01, ¥&p < 0.001, versus to miR-135a-5p inhibitor + si-NC
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Fig. 7 DANCR knockdown blocked the tumor formation in vivo involving KLF8 activation. CAL-27 or TCa-8113 cells transfected with ShRNA
against DANCR were inoculated subcutaneously into the nude mice. Xenografts were measured every 4 days with a caliper. a Tumor volumes were
measured every 4 days. b Mice were sacrificed after 25 days, and xenograft tumors were excised and weighed. c Relative expression of MMP-2 and
MMP-9 protein in tumor tissues was measured by western blot after 25 days. d Relative expression of KLF8 protein in tumor tissues was examined
by western blot after 25 days. e Immunofluorescence staining was performed to investigate KLF8 immunoreactive materials in tumor tissues after
25 days. ***p <0.001, versus to sh-NC
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the tumor growth, which indicates the oncogenic role of
DANCR in TSCC tumorigenesis.

To the best of our knowledge, this was the first report
about the role of DANCR in the progression of TSCC.
Emerging references suggested that IncRNAs might func-
tion as “sponge” of miRNAs to participate in multiple bio-
logical processes. For instance, IncRNA ZFAS] activated
the expression of ZEB1, MMP-14 and MMP-16 to pro-
mote tumor growth and metastasis by sponging miR-150
in hepatocellular carcinoma [29]. Wang et al. reported
that DANCR facilitated ROCKI1-mediated malignant
biological behaviors through decoying both miR-335-5p
and miR-1972 in osteosarcoma [30]. In this current study,
functional experiments indicated that miR-135a-5p over-
expression protected against the proliferation, migration
and invasion of TSCC cells in vitro, which was showed
to directly target DANCR. The inhibitory effects of
DANCR silence on TSCC progress could be rescued by
silencing miR-135a-5p. Altogether, this study shows that
miR-135a-5p serves as a “sponge” miRNA of DANCR to
prevent the progression of TSCC.

MiRNAs modulate gene transcription and expres-
sion by directly targeting the 3’ UTR of mRNAs, and
IncRNAs may exhibit sponging effects on miRNAs dur-
ing tumor progression. DANCR had been described to
competitively bind miR-149 to positively regulate MSI2
expression and promote tumor malignant phenotypes in
the pathogenesis of bladder cancer [31]. Although KLF8
expression was altered by DANCR and miR-135a-5p,
whether KLF8 was the downstream effector of DANCR/
miR-135a-5p to mediate the regulation of TSCC progres-
sion was not well understood. Knockdown of KLF8 atten-
uated the effect of miR-135a-5p inhibitor on TSCC cell
proliferation, migration and invasion. More importantly,
KLF8 was reported to be a direct target of miR-135a-5p
to inhibit NSCLC cell migration, invasion and EMT pro-
cess by Shi et al. [16]. Together, these results suggest that
DANCR/miR-135a-5p axis affects the malignancies of
TSCC by the regulation of KLF8.

In addition, MMP is a classical zinc-dependent endo-
peptidase to affect cell proliferation, angiogenesis, and
tumor invasion and metastasis through the degradation
of extracellular matrix [32, 33]. MMP-2 and MMP-9 had
been demonstrated to be important prognostic biomark-
ers in diverse cancers, such as breast cancer, colorectal
cancer, and NSCLC [34-36]. Considering that KLF8 was
highlighted to bind the promoter of MMP-9 to induce
its expression and stimulate cancer invasion [37, 38],
thus we further examined the alterations of MMPs in the
downstream of KLF8. Our data showed that the expres-
sion of MMP-9 and MMP-2 was altered by DANCR/
miR-135a-5p/KLF8 axis, which just further proved the
regulatory network on tumor malignancies from the
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point of molecular level. Therefore, we conclude that
DANCR serves as a “sponge” of miR-135a-5p to activate
KLE8/MMP-2/9 signaling pathway, thus stimulating the
development and progression of TSCC.

Conclusion

In conclusion, this present study develops a novel insight
that the TSCC tumor progression may be regulated by
DANCR/miR-135a-5p/KLF8 axis. To the best of our
knowledge, DANCR is suggested to function as a diag-
nostic biomarker of TSCC for the first time, which may
provide new therapeutic targets for the prevention and
treatment of TSCC.
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The singnificance of sirtuin and SGLT-2 against diabetic nephropathy
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BRFETILoVNMIE VT EEHMRBROBRNSB-HRERIITELILEMHLT
V3,
RE. ETLUTHERFET LIV OHERBESRERBRICNT 5. BEFHEERNF O
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The singnificance of sirtuin and SGLT-2 against diabetic nephropathy
HE R mCE L a SEE L
L. BIAME (1D

1) HE (Goald
To evaluate protective effects of dapagliflozin against diabetic kidney disease (DKD) focusing on
mitochondorial dysfunction related to inflammation and autophagy.

2) UEmg (Approach)

In T2DM proximal tubular cel

N

3) MEl & FiE (Materials and methods)
3.1 Cell culture
Human kidney proximal tubular cells (HK-2 cells) were cultured in 5mM or 25mM glucose modified Eagle’ s medium
(DMEM) in the presence or absence of dapagliflozin{(50 uM) for 48h.
3.2 Mitotracker green staining
HK-2 cells were cultured in eight-well culture slides with DMEM in the presence or absence of dapagliflozin for
48h. Then removed the medium and added pre-warmed MitoTracker Green (100nmol/L) for 30 min at 37° C. The
mitochondrial staining was observed under a fluorescence microscope
3.3 Autophagic flux

HK-2 cells were cultured in 5mM, 25mM DMEM in the presence or absence of dapagliflozin or insulin (100nM)
for 24h, then incubated with Chloroquine (100 uM) for 1h.
3.3 Western blot analysis
Proteins were harvested using radioimmunoprecipitation assay lysis buffer then were boiled at 100° C for 5 min.
Lysates were separated on sodium dodecylsulfate-polya—crylamide gels and transferred onto polyvinylidene
fluoride membranes by using the semidry method. After blocking with Tris-buffered saline with Tween 20
containing 5% non-fat dry milk, the membranes were incubated with primary antibodies (SGLT2 1:200, p—AMPK
1:1000, AMPK 1:1000, SIRT1 1:500, acetylated-NFkB p65 1:200, NF-kB p65 1:1000, IL-1B8 1:500, IL-6 1:500, TNFa
1:1000, p—mTOR 1:1000, mTOR 1:1000, p-S6 1:1000, S6 1:1000, LC3 1:1000) at 4° C overnight. The membranes were
washed with Tris-buffered saline with Tween 20 three times and then incubated with HRP-conjugated secondary
antibodies for lh at room temperature. After washing with Tris-buffered saline with Tween 20 three times, the
blots were developed with an enhanced chemiluminescence detection system and visualized using an Image-Quant
LAS 400 camera system.
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L. B (2
1) FER&ER (Results)

4.1 Dapagliflozin suppressed the expression of SGLT2 and activated p-AMPK in a dose—dependent manner in HG
treated HK-2 cells.

LG HG
DAPA 0 0 10 20 50 100(uM)

1}
- G

SGLT2 T HGADAPA 10,4
HGsDAPA 20,M
= oo i
p-AMPK
AMPK
' T
. ! DAPR:
p-actin ©P<0
P 0

4.2 Dapagliflozin activated AMPK, suppressed the expression of inflammatory cytokines, such as IL-1B8, IL-6 and
TNFa via activating p—AMPK and deactylating NF-«x B via SIRTI.

LG  HG HG+DAPA
SGLT2 - ;
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I GO
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B-actin
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L. BHIUHEE (D

4.3 Dapagliflozin restored the mass of mitochondria, which were suppressed by HG in HK-2 cells

LG HG HG+DAPA
- . . .
Mitotracker
Green
- . . .
200 um

4.4 HG induced autophagic flux and insulin suppressed autophagic. Dapagliflozin treatment inhibited mTOR
pathway, via activating p—AMPK, but could not induce autophagic flux in HG treated HK-2 cells
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5) &% (Discussion)

The pathogenesis of T2DM and DKD involve in multiple mechanisms. Among them mitochondrial dysfunction plays a
central role and is closely related to inflammation, oxidative stress, and impaired autophagy [1, 2]. Previous
reports have shown that members of the mammalian Sirtuin family play a crucial role in the regulation of
mitochondrial quality control [1, 3, 4]. As the most widely studied member of the Sirtuin family, SIRTIl is a
NAD+-dependent deacetylase, it deacetylates multiple transcription factors and proteins, which involves
mitochondrial biogenesis [5], oxidative stress[6], inflammation [7] and autophagy [(8].

Sodium-glucose cotransporter 2(SGLT2) inhibitors are effective antidiabetic drugs that have been confirmed
to reduce high glucose independent of insulin and protect against progression of DKD [9]. In db/db mice, SGLT2

expression increased with concomitant decreases in SIRT1, SGLT2 inhibitor canagliflozin activated AMP-activated
protein kinase (AMPK) and SIRTI [10].
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In our study, we found that HG induced inflammatory cytokines, such as IL-1B, IL-6 and TNFa ., Dapagliflozin
inhibited inflammation via activating p-AMPK and deactylating NF-x B through SIRT1 in HK2 cells. However, the
protein level of SIRT1 was no difference in these groups. These results were consistent with our previous
research in db/db mice, a T2DM animal model [6]. We speculated that dapagliflozin may have an effect on the
activity of SIRT1 without changing its protein expression. The intracellular NAD+/NADH ratio and activity of
SIRTL are needed to detect in our following experiment

Our data also showed autophagic flux was increased in HG condition and suppressed in the presence of insulin
Dapagliflozin restored p-AMPK, then suppressed mTOR pathway. These were consistent with previous study [11]
Proximal tubule autophagy differs in Type 1(insulin deficiency) and 2 Diabetes (insulin resistance). Autophagy
is induced in STZ-induced TIDM mice via various cellular stresses such as reactive oxygen species, endoplasmic
reticulum and hypoxia, while is suppressed in db/db mice [11]. Our results showed Dapagliflozin could not
increase autophagic flux, which is inconsistent with some previous studies [12, 13]. We need to confirm our data
in the further experiment and looking for other mechanisms.
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ARTICLE INFO ABSTRACT

Keywords: The incidence of type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD) has significantly increased
Sirtuins worldwide in recent decades, and improved treatments for T2DM and DKD are urgently needed. The patho-
Mitochondria genesis of aging-related disorders, such as T2DM and DKD, involves multiple mechanisms, including in-

Type 2 diabetes

flammation, autophagy impairment, and oxidative stress, which are closely associated with mitochondrial
Diabetic kidney disease

dysfunction. Therefore, mitochondrial quality control may be a novel therapeutic target for T2DM and DKD.
Previous reports have shown that members of the mammalian Sirtuin family, SIRT 1-7, which are recognized as
antiaging molecules, play a crucial role in the regulation of mitochondrial function and quality control through
the modulation of oxidative stress, inflammation and autophagy. In this review, we summarized the research
published in recent years to highlight the role of Sirtuins in mitochondrial quality control as a therapeutic target
for T2DM and DKD.

Abbreviations: T2DM, type 2 diabetes mellitus; DKD, diabetic kidney disease; AKI, acute kidney injury; sir2, silent information regulator 2; SIRT, Sirtuins; HFD,
high-fat diet; CR, calorie restriction; RSV, resveratrol; ZDRs, Zucker diabetic rats; WFRs, Wistar fatty rats; HUVECs, human umbilical vein endothelial cells; MEF,
murine embryonic fibroblasts; hESCs, human embryonic stem cells; EPCs, endothelial progenitor cells; eGFR, estimated glomerular filtration rate; TCA, citric acid
cycle; AMPK, AMP activated kinase; p-AMPK, phosphorylated-AMP activated kinase; CaMKKp, Ca2+/calmodu1in-dependent protein kinase kinasef; ERK, extra-
cellular signal-regulated kinase; CPS1, carbamoyl phosphate synthetase 1; ECHA, trifunctional enzyme subunit alpha; HMGCS2, 3-hydroxy-3-methylglutaryl-CoA
synthase 2; PI3K, phosphoinositide 3-kinase; MCD, malonyl-CoA decarboxylase; PKM2, pyruvate kinase isozyme M2; G6PD, glucose-6-phosphate dehydrogenase;
AceCS2, acetyl-CoA synthetase 2; GDH, glutamate dehydrogenase; SDH, succinate dehydrogenase; LDH, lactate dehydrogenase; TPI, triose phosphate isomerase;
PFK1, aldolase, and phosphofructokinase-1; PEPCK, phosphoenolpyruvate carboxykinase; SDHA, succinate dehydrogenase subunit A, flavoprotein; IDH2, isocitrate
dehydrogenase 2; LCAT, lecithin cholesterol acyltransferase; MCAD, medium-chain acyl-CoA dehydrogenase; VLCAD, very-long-chain acyl-CoA dehydrogenase;
CPT1, carnitine palmitoyltransferase; MTCOZ2, mitochondrially encoded cytochrome C oxidase II; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PKA, protein
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drogenase complex; GCN5, nonrepressed protein 5; NAD*, nicotinamide adenine dinucleotide; ATP, adenosine triphosphate; Mfn1/2, mitofusion1/2; OPA1, optic
atrophy 1; Drpl, dynamin-related protein 1; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1a; TFAM, mitochondrial transcription factor A;
ETC, subunit of electron transport chain; ANT2, adenine nucleotide translocator2; GABPB1, GA-binding protein; PFS™, mitochondrial protein folding stress;
AdipoR1, adiponectin receptor 1; PPARa, peroxisome proliferator-activated receptor a; ROS, reactive oxygen species; SOD1, superoxide dismutase 1; SOD2, su-
peroxide dismutase 2; MnSOD, manganese superoxide dismutase; OXPHOS, oxidative phosphorylation; Prx3, peroxiredoxins 3; Prx5, peroxiredoxins 5; Trx2,
thioredoxin 2; TR2, thioredoxin reductase 2; UCP-2, uncoupling protein 2; FOXO, forkhead box O; Ace-FOXO1, acetylated-forkhead box O 1; Nrf2, NF-E2-related
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1. Introduction

The prevalence of type 2 diabetes mellitus (T2DM) has been gra-
dually increasing worldwide in recent decades [1]. Between 2001 and
2009, the prevalence of T2DM increased from 3.4% to 4.6% in the
United State [2] and from 9.3% in 2010 to 10.9% in 2013 in China [3].
Accompanying with the increasing prevalence, the incidence of its
chronic complications, such as diabetic kidney disease (DKD) also in-
creased (from 19.5% in 2010 to 24.3% in 2015 in China) [4]. DKD is
considered as the main cause of end-stage renal diseases and an in-
dependent risk factor for cardiovascular diseases [5]. All of these dis-
orders bring an enormous burden to the healthcare system worldwide.
Although several new drugs such as SGLT2 inhibitors or GLP-1 agonist
have been developed to treat T2DM and presented prospective out-
comes in recent years [6-11], there is still an urgent need for more
effective therapies for T2DM and DKD.

Aging is an inevitable and universal process. It increases oxidative
stress and inflammation caused by mitochondrial dysfunction and
weakens the responsiveness to intracellular stress, ultimately leads to
metabolic dysfunction and the disruption of cellular homeostasis [12].
Inflammation is also considered an important role in the pathogenesis
of aging-related diseases [13]. Nuclear factor kappa-B (NF-kB) is the
central transcriptional factor involved in inflammation, and it mediates
the expression of multiple inflammatory factors, including tumor ne-
crosis factor-a (TNF-a), interleukin-1f (IL-1f) and interleukin-6 (IL-6),
[14]. Aging and cellular senescence may accelerate the progression of
T2DM and DKD [12], associating with inflammation and mitochondrial
dysfunction [15-17]. Therefore, mitochondrial quality control might be
a potential target for the treatment of age-related diseases such as
T2DM and DKD.

Mitochondrial quality control involves a variety of mechanisms,
among which the regulation by Sirtuins is a highlighted direction. The
Sirtuin family contains highly conserved nicotinamide adenine dinu-
cleotide (NAD*)-dependent histone/protein deacetylases and ADP-ri-
bosyltransferases [18,19]. Sirtuins (SIRT1-7) are recognized as

Mitochondrial quality control ?

A vl cnalitel il afunction

ROS

Production*/Scavenging,

Imbalanced mitochondrial

fusion and fission

Autophagy/Mitophagy
Mitochondrial Biogenesis\,
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antiaging molecules and have been confirmed to participate in multiple
cellular processes including the regulation of mitochondrial function,
oxidative stress, inflammation and autophagy [20], which is corre-
spondingly related to the pathogenesis of T2DM and DKD.

In this review, we summarized studies published in recent years to
highlight the role of Sirtuins in mitochondrial quality control related to
the improvement of mitochondrial function/biogenesis/fission and fu-
sion balance, anti-oxidative stress/inflammation and induction of au-
tophagy as a therapeutic target for T2DM and DKD.

2. Mitochondrial dysfunction on the pathogenesis of T2DM and
DKD

Mitochondrial dysfunction has been identified to be linked to the
pathogenesis of T2DM and DKD. Clinical studies have shown that T2DM
patients have fewer mitochondria, lower mitochondrial density and
adenosine triphosphate (ATP) production than normal individuals
[21,22]. Additionally, a previous study reported that glycolytic en-
zymes including pyruvate kinase M2 (PKM2) and mitochondrial en-
zymes including mitochondrially encoded cytochrome C oxidase II
(MTCO?2) are significantly elevated in glomeruli from individuals with
extreme duration of type 1 diabetes (=50 years) without diabetic ne-
phropathy compared to those with histologic signs of diabetic ne-
phropathy [23]. Moreover, in T2DM patients, these enzymes including
PKM2 and MTCO2 are significantly increased in glomeruli of CKD™
individuals, compared to CKD* individuals [24]. These data indicate
that maintaining mitochondrial function or mitochondrial quality
control in the kidney is important for protecting against DKD.

Mitochondrial quality control in cells mainly involves the regulation
of redox status, fusion and fission procedures, autophagy/mitophagy
and biomolecular repair/biogenesis [15]. The disruption of either of
these quality control pathways is a major cause of mitochondrial dys-
function and leads to oxidative stress, inflammation, contributes to the
pathogenesis of mitochondrial-related diseases, ranging from inherited
diseases to age-related disorders, T2DM and its complications including

Fig. 1. Mitochondrial dysfunction includes im-
balance between reactive oxide species (ROS) pro-
duction and scavenging, imbalanced fusion and fis-
sion, impaired autophagy/mitophagy and reduced
mitochondrial biogenesis, which contribute to the
pathogenesis for type 2 diabetes and diabetic kidney
disease through glucose intolerance, insulin re-
sistance, oxidative stress, inflammation, excess
apoptosis and fibrosis in diabetic kidney. Sirtuins
may be a potential target for the treatment of these
diseases through mitochondrial quality control.

Type 2 diabetes, diabetic kidney disease
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DKD [25,26] (Fig. 1).
2.1. Redox status in mitochondrial

Mitochondria are main source of reactive oxygen species (ROS)
[271, and mitochondrial ROS is scavenged by antioxidant enzymes such
as superoxide dismutase 2 (SOD2), known as a manganese superoxide
dismutase (MnSOD), [28]. Therefore, mitochondrial dysfunction results
in the enhancement of oxidative stress by increased production of ROS
from injured mitochondria and impairment of SOD2. In diabetic state,
mitochondria exhibit increased production of ROS due to impaired
electron transport and ROS scavenging, then contribute to the patho-
genesis of insulin resistance/diabetes and DKD [16,17,29] (Fig. 1).
Additionally, oxidative stress is closely related to inflammation, there-
fore, mitochondrial quality control is also important for suppression of
both oxidative stress and inflammation.

2.2. Balance of fusion and fission

Fusion and fission are crucial to maintaining mitochondrial stability
and biological function [15]. The expression of mitochondrial fusion
protein (mitofusion2; Mfn2 and optic atrophyl; Opal) is reduced in
skeletal muscles of patients with T2DM [30]. Our previous studies
found that mitochondria fusion proteins such as Mfnl/2 and Opal in
the kidney are inhibited by a high-fat diet (HFD) [31], and fission
proteins such as dynamin-related protein 1 (Drpl) are increased in
renal cortex of Zucker diabetic rats (ZDRs), a T2DM rat model [32].
Other report demonstrated that a deficiency in Mfn2 leads to increased
superoxide and the activation of NF-xB, leading to insulin resistance in
rat skeletal muscle cells [33].

2.3. Autophagy and mitophagy

Mitophagy is a selective autophagy that recognizes damaged mi-
tochondria for degradation through fission of mitochondria [34].
Starvation is well known to activate autophagy, while starvation leads
to inhibition of mitochondrial fission through protein kinase A (PKA)-
induced phosphorylation of Drpl, then results in mitochondrial elon-
gation [35]. Multiple studies have identified the key role of autophagy
in the pathogenesis of T2DM and its chronic complications, such as
DKD [36,37]. Our previous study also observed that the accumulation
of p62/Sqstm1 and abnormal mitochondria are significantly enhanced
in the kidneys of Wistar fatty rats (WFRs), a rat model of T2DM, in-
dicating dysregulation of autophagy [38,39]. Thus, regulation of mi-
tochondrial fission/fusion balance and autophagy/mitophagy play a
crucial role on mitochondrial quality control to improve T2DM and
DKD (Fig. 1).

3. Mammalian Sirtuins family

Sirtuins are derived from silent information regulator 2 (sir2) in
research on the cause of aging in yeast [18,19]. Sirtuins are highly
conserved from bacteria to mammals. Seven human Sirtuin genes
(SIRT1-7) have been identified and divided into four phylogenetic
classes, known as classes I-IV [40]. Table 1 lists the Sirtuin family
members and their characteristics.

3.1. SIRT1

SIRT1 is the most widely studied member of the Sirtuin family.
SIRT1 is mainly located in the nucleus and shuttles between the nucleus
and cytoplasm under physiological and pathological stress [41]. SIRT1
deacetylates histone, such as H4 lysine 16 (H4-K16Ac), H3 lysine 9 (H3-
K9Ac), and H1 lysine 26 (H1-K26Ac) and regulates the activity of
multiple transcription factors and proteins via deacetylation, which
involves mitochondrial biogenesis, redox homeostasis, inflammation

BBA - Molecular Basis of Disease 1866 (2020) 165756

Table 1
Sirtuins family and their characteristics.

Sirtuins  Classification ~ Enzyme activity Location

SIRT1 I Deacetylase Nucleus and cytoplasm

SIRT2 I Deacetylase Cytoplasm and nucleus
Demyristoylase

SIRT3 I Deacetylase Mitochondria and cytoplasm

SIRT4 Il ADP-ribosyltransferase ~ Mitochondria
Deacetylase
Lipoamidase

SIRT5 I Deacetylase Mitochondria
Desuccinylase
Demalonylase

SIRT6 v Deacetylase Nucleus and endoplasmic
ADP-ribosyltransferase  reticulum

SIRT7 v Deacetylase Nucleus and cytoplasm

and autophagy [40,42] (Fig. 2).

3.1.1. Role in mitochondrial biogenesis and oxidative stress

Peroxisome proliferator-activated receptor gamma coactivator la
(PGC-1a) is a key transcriptional coactivator that regulates mitochon-
drial biogenesis, mitochondrial respiration and redox status through the
induction of the oxidative phosphorylation (OXPHOS) genes expression
and anti-oxidative enzymes [43,44]. SIRT1 deacetylates PGC-1a to in-
crease mitochondrial biogenesis and mitochondrial fatty acid oxidation
in myotubes [45]. Calorie restriction (CR) or fasting can induce PGC-1a
deacetylation via SIRT1, which leads to increased mitochondrial bio-
genesis and the activation of mitochondrial fatty acid oxidation genes in
skeletal muscle or white adipose tissue [45]. As a key regulator of nu-
trient and energy expenditure, AMP-activated kinase (AMPK) enhances
SIRT1 activity by increasing cellular NAD* levels, resulting in the
deacetylation and modulation of the activity of downstream SIRT1
targets [46,47]. Adiponectin, which is an antidiabetic hormone that
maintains glucose and fatty acid metabolism, combines with adipo-
nectin receptor 1 (AdipoR1) to induce the expression and activation of
Ca2™" /calmodulin-dependent protein kinase kinasef (CaMKKB), AMPK,
and SIRT1 and to decrease the acetylation of PGC-1a in a Ca®*-de-
pendent manner to regulate mitochondrial biogenesis, which further
relieves insulin resistance in skeletal muscle [48]. Additionally, SIRT1
activates peroxisome proliferator-activated receptor o (PPARa), a
major regulator of lipid metabolism, via PGC-1a deacetylation to en-
hance fatty acid oxidation in skeletal muscle [45,48]. Increased PGC-1a
activity and expression increases the expression of ROS-detoxifying
enzymes, such as SOD2 [44]. SIRT1 regulates the expression of several
antioxidant genes in bovine aortic endothelial cells, including SOD2,
catalase, peroxiredoxins 3 and 5 (Prx3, Prx5), thioredoxin 2 (Trx2),
thioredoxin reductase 2 (TR2), and uncoupling protein 2 (UCP-2)
through the formation of a FOXO3a/PGC-1a complex [49]. The bene-
ficial effects of SIRT1 on diabetic renal injuries correlate with the ac-
tivation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and
antioxidant response element (ARE) (Nrf2/ARE) antioxidative
pathway, which leads to overexpression of antioxidative enzymes such
as heme oxygenase-1 (HO-1) and superoxide dismutase 1 (SOD1) [50].
Additionally, advanced glycation end products (AGEs) are one of the
main causes of DKD. The activation of the Nrf2-ARE pathway by the
overexpression of SIRT1 ameliorates mitochondrial oxidative stress,
further relieving the toxicity of high glucose to podocytes in db/db mice
[51] (Fig. 2A). Epithelial-mesenchymal transition (EMT) plays a pivotal
role in the pathogenesis of renal tubulointerstitial fibrosis, which is
closely related to the pathogenesis for progression of DKD. Previous
report demonstrated that aldosterone-induced EMT is dependent on
mitochondrial-derived oxidative stress, and SIRT1 restores aldosterone-
induced mitochondrial dysfunction and EMT by upregulating PGC-1a
[52]. The 66-kDa Src homology 2 domain-containing protein (p66Shc)
is phosphorylated at serine 36 (S36) in response to ROS and
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Fig. 2. SIRT1 regulates mitochondrial function related to fatty acid oxidation (FAO), mitochondrial biogenesis, oxidative phosphorylation (OXPHOS), oxidative
stress, inflammation, epithelial-mesenchymal transition (EMT), apoptosis, autophagy/mitophagy and mitochondrial fusion, through the multiple mechanism.

translocates to mitochondria, where it produces ROS by oxidizing cy-
tochrome C [53]. SIRT1-mediated deacetylation of p66Shc suppresses
vascular oxidative stress and endothelial dysfunction in diabetes [54].

3.1.2. Role in inflammation

Previous studies have demonstrated that SIRT1 deacetylates the
RelA/p65 subunit of NF-xB at Lys310 to inhibit its transcription [55].
The activation of SIRT1 inhibits inflammatory pathway through dea-
cetylation of NF-kB (p65) in adipocytes and macrophages to improve
glucose tolerance and insulin sensitivity [56,57]. Our previous research
also demonstrated that in the proximal tubular cells of WFRs, the ex-
pression of inflammation-related genes such as monocyte chemoat-
tractant protein 1 (MCP-1), intercellular adhesion molecule-1 (ICAM-
1), vascular cell adhesion molecule-1 (VCAM-1) and the acetylated-NF-
kB (p65) increased, while CR can alleviate the expression of in-
flammatory factors by elevating levels of SIRT1, further deacetylating
NF-kB [38]. In the podocytes of db/db mice, the deletion of SIRT1 leads
to the acetylation of NF-kB (p65) and signal transducer and activator of
transcription 3 (STAT3), which results in increased susceptibility to
diabetic renal injuries, including inflammation and apoptosis [58]
(Fig. 2B).

3.1.3. Role in autophagy

Impaired autophagy is involved in the development of a variety of
aging-related diseases [59], especially T2DM and DKD [36]. SIRT1 is
considered to be a positive regulator of autophagy, which can deace-
tylate essential autophagic factors, such as autophagy-related 5 (Atg5),

Atg7 and microtubule-associated protein light chain 3 (LC3), leading to
the induction of autophagy [60,61]. We previously reported that
dietary restriction can ameliorate the impaired autophagy in the kidney
of WFRs and can restore SIRT1 levels and degrade p62/Sqstm1 [38]. In
addition to the deacetylation effect, the inactivation of SIRT1 also re-
sults in the phosphorylation of NF-kB p65, leading to inflammation, the
activation of the mechanistic target of rapamycin complex 1 (mnTORC1)
pathway and the inhibition of AMPK in cultured human monocytes.
These results connect autophagy and inflammation together [38].
SIRT1 deacetylates mitochondrial fusion-related proteins, results in
mitochondrial quality control. A research reported that SIRT1 deace-
tylases Mfnl and up-regulates Mfnl protein stability, leading to mi-
tochondrial elongation [62]. Additionally, SIRT1 deacetylates Mfn2,
leading sequentially to enhancement of autophagy, maintaining mi-
tochondrial quality and cell survival in hepatocytes [63].

3.2. SIRT2

SIRT2 is widely distributed in various tissues and organs and is
especially highly expressed in metabolic-related organs such as brain,
liver, muscle, adipose, kidney, and pancreas [64]. SIRT2 is located
primarily in the cytoplasm and can also be found in the nucleus when
cells are in the G2/M transition of the cell cycle and during mitosis
[65]. SIRT2 functions mainly as an NAD * -dependent histone deacety-
lase [66] and demyristoylase [67]. Itis related to multiple processes,
including energy metabolism, inflammation, oxidative stress, mi-
tochondrial function, autophagy, and metabolic process including
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Fig. 3. (A) SIRT2 regulates mitochondrial function related to oxidative stress, inflammation, mitochondrial biogenesis and mitochondrial fission/fusion balance, the
multiple mechanism. (B) In adipose tissue, SIRT2 dysfunction due to HIF1a induces increased acetylated PGC-1a, resulting in mitochondrial dysfunction including
reduction of fatty acid oxidation (FAD), oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis. In cancer cells, inactivation of SIRT2 induces increased
acetylated FOXOL1 in cytosol, which binds to Atg7, resulting in induction of autophagy.

T2DM and DKD [64] (Fig. 3). Several studies have shown that SIRT2 is
suppressed when energy is excessive and activated when energy is in-
sufficient, indicating that SIRT2 is closely related to intracellular energy
utilization. SIRT2 knockout mice exhibit reduced muscle insulin sen-
sitivity, increased liver insulin resistance and increased body weight
under HFD conditions [68], indicating that SIRT2 protects against in-
sulin resistance under overnutrition conditions.

3.2.1. Role in mitochondrial biogenesis and oxidative stress

SIRT?2 is closely related to improving oxidative stress and reducing
the production of ROS in the development of the pathological me-
chanisms of insulin resistance and T2DM. SIRT2 deacetylates and ac-
tivates FOXO3a, then activates the transcription of SOD2, thereby
further increases intracellular mitochondria-localized SOD2 antioxidant
protein levels, reduces ROS production and improving oxidative stress
in HEK 293 T cells [69]. Under oxidative stress, SIRT2 deacetylates and
activates glucose-6-phosphate dehydrogenase (G6PD), a key enzyme
involved in pentose phosphate pathway, which increases the produc-
tion of NADPH to counteract oxidative stress in erythrocytes [70]. In
the above mentioned effects of SIRT2 against oxidative stress, its reg-
ulation of mitochondrial quality may play a crucial role. In hepatocytes,
SIRT2 increases Mfn2, decreases Drpl and attenuates the down-
regulation of mitochondrial transcription factor A (TFAM), a key
mtDNA-associated protein, to increase mitochondrial mass, con-
tributing to the improvement of insulin sensitivity [71]. In adipocytes,
the hypoxia induced by excess energy causes hypoxia inducible fac-
torla (HIF1a) accumulation, which inhibits SIRT2 activity. HIF1a-in-
duced reduction of SIRT2 activity decreases PGC-la transcriptional
activity by increased its acetylation, which results in decrease of the
expression of mitochondrial genes, thereby hindering the catabolism of
fatty acids in mitochondria [72].

3.2.2. Role in inflammation

SIRT2 has some similar functions to SIRT1, such as negatively reg-
ulating NF-xB-dependent gene expression by deacetylating p65 Lys 310
[73], and has been shown to participate in the pathogenesis of multiple
diseases such as colitis and arthritis by regulating the inflammatory
pathway [74,75]. Nevertheless, no study has clearly shown whether
SIRT2 participates in the pathological development of T2DM and DKD
through the inflammatory pathway.

3.2.3. Role in autophagy

SIRT2 is also involved in the autophagy process. Unlike SIRT1 in-
teracts with FOXO1 in the nucleus, SIRT2 deacetylates acetylated
FOXO1 in the cytoplasm. Reduction of SIRT2 activity inhibits the
deacetylation of FOXO1, and acetylated FOXO1 interact with Atg7 in
the cytosol and induce autophagy in cancer cells [76].

3.3. SIRT3

SIRT3 is mainly located in mitochondria, acting as a NAD " -de-
pendent deacetylase to regulate mitochondrial protein deacetylation
[77]1 and energy homeostasis [78]. Through its deacetylation effects,
SIRT3 is involved in the development of metabolic diseases including
T2DM and DKD [79] (Fig. 4). Clinical studies have revealed that SIRT3
activity is decreased in skeletal muscle and pancreatic islets [80] in
diabetic patients and that high SIRT3 expression levels are associated
with longevity [81]. SIRT3 knockout mice show decreased oxygen
consumption, reduced glucose-stimulated insulin secretion, elevated
acetylation of mitochondrial proteins and increased oxidative stress
[80,82,83].

3.3.1. Role in mitochondrial biogenesis and oxidative stress

SITR3 deacetylates acetyl-CoA synthetase 2 (AceCS2), an important
rate-limiting enzyme in the citric acid cycle to participate in glycolysis,
and deacetylates glutamate dehydrogenase (GDH), which is responsible
for amino acid oxidation in the citric acid cycle [84]. SIRT3 also dea-
cetylates long-chain acyl-CoA dehydrogenase (LCAD), a key enzyme in
fatty acid oxidation, resulting in the activation of fatty acid metabolism
[85]. SIRT3 is essential for the maintenance of basal ATP levels and
mitochondrial electron transport. It deacetylates complex I and com-
plex II, especially the succinate dehydrogenase flavoprotein (SDHA)
subunit of electron transport chain (ETC), to increase their activity,
further elevating mitochondrial oxidative phosphorylation [82,86,87].
The overexpression of SIRT3 deacetylates ATP synthase and further
increases ATP levels [82,86,87].

SIRT3 has been shown to play a central role against mitochondrial
oxidative stress through the deacetylation and activation of antioxidant
enzymes such as isocitrate dehydrogenase 2 (IDH2) and SOD2 [88-90].
Our previous report also demonstrated that the expression of acety-
lated-SOD2 and -IDH2 was significantly increased in mitochondria
isolated from renal cortex of ZDRs, compared to Zucker lean diabetic
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rats, which is associated with SIRT3 inactivation in diabetic kidney
[32]. Additionally, SIRT3 inhibition increases the acetylation of both
SOD2 and p53 protein to aggravate oxidative stress in an acute kidney
injury (AKI) rat model [91]. Primary pancreatic islets of SIRT3
knockout mice and pancreatic B cell lines (MIN6) exhibit decreased
SIRT3 expression and increased SOD2 acetylation, leading to impaired
glucose-stimulated insulin secretion and glucose-stimulated ATP gen-
eration, associated with oxidative stress [83]. In addition to the direct
deacetylation of SOD2, SIRT3 upregulates the expression SOD2 and
catalase by deacetylating FOXO3a to increase its transcriptional ac-
tivity [92].

SIRT3 is related to mitochondrial fusion and fission processes.
Previous research demonstrated that SIRT3 deacetylates and actives
mitochondrial fusion proteins such as OPA1 at the lysine 926 and 931
residues and elevates its GTPase activity to regulate mitochondrial
dynamics and further protects cardiomyocytes from stress [93]. The
AMPK activator, 5-aminoimidazole-4- carboxamide-1-B-D-ribofurano-
side (AICAR) can reduce cisplatin-induced AKI and improve renal
function via the deacetylase activity of SIRT3. SIRT3 deficiency ex-
acerbates AKI accompanied by the increased expression of Drpl and the
decreased expression of OPA1 and PGC-1a, which leads to a shift in
mitochondria dynamics toward fission [94].

3.3.2. Role in inflammation
Currently, there are limited reports on SIRT3 and inflammation. In a
rat insulinoma Cell line (INS1 cells), SIRT3 knockdown results in not

only impaired insulin secretion but also impaired protective effects of
nicotinamide mononucleotide on inflammatory cytokines, such as TNF-
a and IL-1f [83]. Another research showed that AGEs decrease SIRT3
expression in endothelial progenitor cells (EPCs) and increase IL-8,
which may be involved in the pathogenesis of diabetes-related vascular
complications [95]. Additionally, SIRT3 ameliorates lipotoxicity-
mediated ROS and inflammation in renal proximal tubular cells [96].
Furthermore, our previous study showed that SIRT3 suppression asso-
ciated activation of transforming growth factor B (TGFB)/Smad sig-
naling and renal fibrosis through induction of abnormal glycolysis by
modulating the HIF1la accumulation and increase PKM2 dimer forma-
tion, leading to abnormal glycolysis and, ultimately, diabetes-asso-
ciated kidney fibrosis [97].

3.3.3. Role in autophagy

The relationship between SIRT3 and autophagy in different tissues
and organs shows different results. Under HFD condition, SIRT3 over-
expression causes AMPK inhibition and mTORC1 activation, resulting
in autophagy suppression in hepatocytes [98]. However, SIRT3 over-
expression can upregulate p-AMPK and downregulate p-mTOR to pro-
mote autophagy in AKI model mice [99].

3.4. SIRT4

SIRT4 is considered to be a mitochondrial protein located in the
mitochondrial matrix and is widely expressed in multiple organs and
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tissues of mammals including liver, muscle and kidney [100]. SIRT4 is
characterized as a NAD"-dependent ADP-ribosylase, deacylase and
acylase, and is involved in the regulation of metabolism and mi-
tochondrial function [101] (Fig. 5). Previous reports showed that SIRT4
in mitochondria is related to the regulation of insulin secretion from 3
cell and glucose tolerance. Pancreatic 3 cells in SIRT4 deficient mice
exhibits promotion of insulin secretion, which is associated with GDH
activation [101]. GDH catalyzes the conversion of glutamate to a-keto-
glutamate, an intermediate of the citric acid cycle (TCA) cycle. Through
the utilization of glutamate and the increasing of mitochondrial ATP
production, GDH is activated to promote insulin secretion, while SIRT4
suppresses GDH activity by its ADP-ribosylation, resulting in the
downregulation of insulin secretion [101]. In SIRT4-depleted INS-1E
cells, insulin secretion is markedly increased under high glucose con-
ditions. SIRT4 catalyzes the ADP-ribosylation of adenine nucleotide
translocator2 (ANT2), an ATP/ADP translocase that transports ATP into
the cytosol and ADP into the mitochondrial matrix, to reduce ATP
production, then negatively regulates insulin secretion [102]. Ad-
ditionally, SIRT4-deficient mice exhibit the elevated basal and stimu-
lated insulin secretion through leucine-induced GDH activation, leading
to develop age-related glucose intolerance and insulin resistance [103].
The absence of SIRT4 increases and destabilizes methylcrotonyl-CoA
carboxylase complex (MCCC) acylation, leading to decreased leucine
oxidation.

3.4.1. Role in mitochondrial biogenesis

SIRT4 may exhibit the opposite functions by decreasing mitochon-
drial function including fatty acid oxidation, compared to SIRT3.
During the fed state, SIRT4 inhibits the activity of malonyl-CoA dec-
arboxylase (MCD) through deacetylation of its enzyme, resulting in an
increase in malonyl-CoA. Increased malonyl-CoA promotes lipid
synthesis and suppresses fatty acid oxidation by inhibition of carnitine
palmitoyltransferase (CPT1), in white adipose tissue and skeletal

muscle of mice [104]. In contrast, the loss of SIRT4 can activate AMPK
via ANT2 uncoupling with SIRT4 to decrease ATP levels in insulin-
producing INS-1E cells [105]. Activated AMPK leads to increased PGC-
la expression, resulting in fatty acid oxidation and mitochondrial
genes. Another study confirmed that SIRT4 knockdown in primary mice
hepatocytes increases the expression of fatty acid oxidation-related
genes such as medium-chain acyl-CoA dehydrogenase (MCAD), CPT1
and PPARq, and mitochondrial genes including PGC-1a. SIRT4-medi-
ated these effects were dependent on SIRT1 [106]. The mRNA levels of
hepatic SIRT4 were significantly increased in ob/ob, db/db, and KKAy
mice, which have obesity, diabetes and hepatic steatosis [106]. In pri-
mary myotubes, SIRT4 knockdown resulted in the increased fatty acid
oxidation and cellular oxygen consumption [106].

3.4.2. Role in inflammation

To date, a few studies have confirmed that SIRT4 is involved in the
inflammatory pathway and oxidative stress. In human umbilical vein
endothelial cells (HUVECS), silencing SIRT4 exacerbates the expression
of IL-1f3, IL-6 and IL-8, while increasing the nuclear translocation and
the transcriptional activity of NF-xB [107]. Further research confirmed
that SIRT4 overexpression suppresses the Phosphoinositide 3-kinase
(PI3K)/Akt/NF-kB pathway and improves oxidized LDL-induced en-
dothelial injury in HUVECs [108]. SIRT4 reverses high glucose-induced
decreases in mitochondrial membrane potential and decreases ROS
accumulation and inflammation in mouse cultured podocytes [109].
Additionally, a clinical study showed that compared with healthy in-
dividuals, T2DM patients have much lower SIRT4 mRNA levels in
granulocytes and monocytes [110].

3.5. SIRT5

SIRTS is another mitochondrial protein member in the sirtuin family
and is expressed broadly in multiple organs, especially in the brain,
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heart, kidney and skeletal muscle [111,112]. SIRT5 participates in the
regulation of metabolism and mitochondrial function through multiple
mechanisms (Fig. 6). Previous studies showed that SIRT5 is a NAD*-
dependent deacetylase activating carbamoyl phosphate synthetase 1
(CPS1), a critical enzyme for detoxification of excess ammonia, to
regulate the urea cycle [112,113]. Other posttranslational modifica-
tions of SIRT5 also include malonylation or succinylation on lysine
residues in the enzymes associated with glycolysis, fatty acid oxidation
and ketone production such as glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH), PKM2, very long-chain acyl-CoA dehydrogenase
(VLCAD), trifunctional enzyme subunit alpha (ECHA) and 3-hydroxy-3-
methylglutaryl-CoA synthase 2 (HMGCS2) [113-119]. These findings
indicate that SIRT5 may participate in metabolic pathway. Never-
theless, although a global increase in hypersuccinylated proteins and
elevated serum ammonia under fasting conditions are observed in
SIRT5 knockout mice, no overt metabolic disorders under either chow
or HFD conditions are observed [120]. Similarly, despite leading to
widespread decreases in protein acetylation, the overexpression of
SIRT5 does not have significant effects on mitochondrial or cellular
metabolism in mice [121]. In contrast, subsequent research showed
that SIRT5 overexpression in ob/ob mice resulted in decreased mal-
onylation and succinylation, leading to improved cellular glycolysis,
suppressed gluconeogenesis, enhanced fatty acid oxidation, and atte-
nuated hepatic steatosis [122]. Role of SIRT5 on insulin secretion and
pancreatic B cell survival is also controversial. A research demonstrated
that SIRT5S negatively regulates pancreatic and duodenal homeobox 1
(PDX1), which is a regulator of insulin gene expression and pancreatic 3
cell survival, through its deacetylase activity, despite SIRT5 having
weak deacetylase activity [123]. Interestingly, SIRT5 mRNA levels were
significantly upregulated in plasma of patients with T2DM. However,
another research showed that SIRT5 protects pancreatic [ cells against
glucolipotoxicity-induced apoptosis and decrease in insulin secretion
[124].

3.5.1. Role in mitochondrial biogenesis

SIRTS5 is involved in the regulation of mitochondrial function and
oxidative stress. SIRT5 desuccinylates and suppresses activities of pyr-
uvate dehydrogenase complex (PDC) and succinate dehydrogenase
(SDH), resulting in reduction of TCA cycle activity [125]. SIRT5 also
deacetylates STAT3 and inhibits its mitochondrial translocation, where
intern decrease in TCA cycle activity [126]. In contrast, a study showed
that SIRT5 binds to cardiolipin and desuccinylates inner mitochondrial
membrane proteins including multiple subunits of four ETC complexes
and ATP synthase, leading to promote respiratory chain function [119].
On the role of SIRT5 for the regulation of redox status, silencing SIRT5
inhibits IDH2 and G6PD desuccinylation, decreasing NADPH produc-
tion and impairing the process of scavenging ROS, which leads to in-
creasing cellular oxidative stress in murine embryonic fibroblasts (MEF)
[127]. In mouse primary hepatocytes, the overexpression of SIRT5 in-
creased ATP synthesis and oxygen consumption in a dose-dependent
manner. SIRT5 is positively regulated by PGC-1a in a PPARa- and es-
trogen-related receptor (ERR)a-dependent manner; in contrast, inter-
estingly, SIRT5 is negatively regulated by the AMPK activator met-
formin, which is the most widely used oral medication for T2DM [128].

3.5.2. Role in inflammation

The mechanism of the involvement of SIRT5 in inflammation is
limited. Hypersuccinylation of PKM2 due to SIRT5 deficiency inhibits
its enzymatic by promoting its tetramer-to-dimer transition, leads to
promote to entry into nucleus, where a complex of PKM2-HIFla is
formed at the promoter of IL-1p gene in LPS-stimulated macrophages
[129]. However, considering that the NAD*/NADH ratio is associated
with inflammation, the decreased levels of NAD* were related to the
increased expression of SIRT2 and the decreased expression of SIRT5 in
endotoxin-tolerant macrophages [130]. SIRT5 deficiency decreased the
Toll-like receptor (TLR)-induced expression of inflammatory cytokines,
such as IL-6. Competing with SIRT2, which deacetylates NF-kB p65 to
relieve inflammation, SIRT5 enhances the acetylation of p65 in a
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deacetylase activity-independent manner, which consequently leads to
the activation of the NF-xB pathway and its downstream cytokines, such
as IL-6, TNF-a and MCP-1 [130].

3.5.3. Role in autophagy

SIRTS5 silencing results in the increased succinylation of glutami-
nase, a key enzyme that transforms glutamine into glutamate to pro-
duce ammonia in mitochondria. In this process, autophagy and mito-
phagy increased the expression of the autophagy markers LC3 paralogs,
the mitophagy marker BCL2 Interacting Protein3 (BNIP3) and the mi-
tophagy pathway PINK1-PARK2 in human breast cancer cell lines MDA-
MB-231 and mouse myoblast C2C12 [131]. Moreover, in SIRT5-over-
expressing cells, the level of mitochondrial fusion markers such as Mfn2
and OPALl increased, which indicates the relationship between SIRT5
and autophagy via mitochondrial quality control [131].

3.6. SIRT6

SIRT6 is mainly located in the nucleus and functions as a nuclear
ADP-ribosyltransferase [132] and NAD*-dependent deacetylase [20].
SIRT6 has been identified to be involved in a variety of metabolic
processes [133-138], lifespan [139,140], inflammation [141-143],
DNA damage repair [144,145] and circadian rhythm [146]. SIRT6 is
involved in the regulation of metabolism and mitochondrial function
through multiple mechanisms (Fig. 7). Role of SIRT6 on glucose
homeostasis which is associated with the pathogenesis for T2DM has
been showed by several SIRT6 gene altered animals. Whole body
SIRT6-deficient mice develop multiple metabolic defects, such as lower
insulin like growth factor-1 (IGF-1) levels and severe hypoglycemia,
eventually dying at approximately 4 weeks [140]. Liver-specific SIRT6-
deficient mice are characterized by increased glycolysis and triglyceride
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synthesis and reduced B-oxidation, which ultimately leads to fatty liver
[133]. Muscle-specific SIRT6-deficient mice show impaired glucose
tolerance, insulin resistance, attenuated whole body energy ex-
penditure, and weakened exercise performance [147]. Pancreatic {3 cell
specific SIRT6 knockout mice have lower ATP levels and mitochondrial
complex levels in islets and glucose intolerance [137]. The myeloid
specific SIRT6 knockout mice fed-HFD exhibited greater increases in
body weight, fasting blood glucose and insulin levels, hepatic steatosis,
glucose intolerance, and insulin resistance, compared to their wild-type
littermates [148]. These findings indicate that SIRT6 may be a potential
target involved in the pathogenesis of T2DM.

3.6.1. Role in glucose metabolism

Previous studies have confirmed that SIRT6 plays a pivotal role in
the regulation of glycolysis and glycogen synthesis. SIRT6-deficient
cells such as muscle cells and ES cells exhibit increased H3K9 acetyla-
tion in the promoters of glycolytic genes such as lactate dehydrogenase
(LDH), triose phosphate isomerase (TPI), glucose transporter 1
(GLUT1), aldolase, and phosphofructokinase-1 (PFK1), accompanied by
increased HIF1a transcriptional activity, leading to the upregulation of
glycolysis and diminished mitochondrial respiration [134]. Ad-
ditionally, tumor suppressor p53 directly activates SIRT6, which dea-
cetylates FOXO1 that in turn reduces the interaction of FOXO1 and its
downstream gluconeogenesis gene, such as phosphoenolpyruvate car-
boxykinase (PEPCK) and glucose-6-phosphate (G6P) [149]. Conversely,
SIRT6 induces PGC-1a acetylation by enhancing the activity of general
control nonrepressed protein 5 (GCN5), which leads to decreases in
gluconeogenesis genes, such as G6P and PEPCK, and then suppresses
hepatic gluconeogenesis [135].
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Fig. 7. SIRT6 regulates mitochondrial function related to fatty acid oxidation (FAO), oxidative phosphorylation (OXPHOS), oxidative stress, inflammation, autop-
hagy/mitophagy and apoptosis, the multiple mechanism, and participates in the regulation of glycolysis and hepatic glucose production as well.
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3.6.2. Role in mitochondrial biogenesis

SIRT6 was also shown to be connected to mitochondrial function
and oxidative stress. Glucose-stimulated insulin secretion and ATP
production are decreased in SIRT6-deficient MIN6 cells, which is re-
lated to mitochondrial damage [137]. The deletion of SIRT6 in muscle
decreased the expression of genes involved in glucose and lipid uptake,
fatty acid oxidation, and mitochondrial OXPHOS because of the lower
AMPK phosphorylation [147]. SIRT6 overexpression reduces ROS levels
and relieves oxidative stress in glioma cells [150]. SIRT6-deficient
human embryonic stem cells (hESCs) exhibit elevated ROS levels,
leading to oxidative stress. SIRT6 regulates the cellular redox home-
ostasis by co-activating Nrf2 antioxidant pathway. SIRT6 associates
with Nrf2 and deacetylates H3K56 at the promoter of Nrf2 target genes
such as HO-1, which is required for the recruitment of RNA polymerase
II complex and subsequent transcriptional activation of Nrf2 and then
restoring the oxidative damage caused by SIRT6 deficiency in hESCs
[151]. Additionally, SIRT6 overexpression in cultured HVECs attenu-
ates the decreased endothelial nitric oxide synthase (eNOS) level in-
duced by hydrogen oxide (H,0,) [152].

3.6.3. Role in inflammation

SIRT6 has been confirmed to be involved in inflammation. It ne-
gatively regulates NF-xB signaling by deacetylating H3K9 at chromatin,
leading to suppression of inflammation [141]. A clinical study showed
that compared with nondiabetic individuals, T2DM patients have de-
creased SIRT6 expression in carotid plaque obtained from individuals
undergoing carotid endarterectomy, which is related to oxidative stress
and inflammation [153]. SIRT6-deficient macrophages from Sirt6
knockout mice showed hyperacetylation of H3K9 and increased occu-
pancy of c-JUN in the promoter of inflammatory-related genes, leading
to the elevation of their gene expression [142].

3.6.4. Role in DKD

SIRT6 was also found to be involved in the pathogenesis of DKD.
The expression of SIRT6 evaluated by immunohistochemistry staining
was markedly reduced in renal biopsies from patients with diabetic
nephropathy, compared to normal subjects, diabetic patients without
nephropathy and patients with other renal diseases such as IgA ne-
phropathy and membranous nephropathy [154]. The mRNA levels of
SIRT6 were positively correlated with estimated glomerular filtration
rate (eGFR) and negatively correlated with proteinuria [154]. As the
mechanism by which SIRT6 protect against diabetes-induced renal in-
juries, particularly podocyte injury, SIRT6 inhibits Notch1 and Notch4
transcription by deacetylating H3K9 in podocytes, leading to reduction
of inflammation, apoptosis and induction of autophagy [154]. Ad-
ditionally, other report showed that SIRT6 overexpression attenuates

high glucose-induced mitochondrial dysfunction in podocytes through
H3K9 and H3K56 deacetylation and AMPK activation to maintain mi-
tochondrial function and protect from apoptosis [155]. Furthermore,
the overexpression of SIRT6 in macrophages protected podocytes
against high-glucose-induced injury such as apoptosis through promo-
tion of the macrophage M2 transformation [156].

3.7. SIRT7

Similar to SIRT1, SIRT?7 is located throughout the nucleus and can
be found in nucleoplasm, especially in the liver. SIRT7 is the least well-
understood member of the sirtuin family [157,158]. An initial study
confirmed that SIRT7 interacts with RNA polymerase I and positively
regulates its transcriptional activity to maintain cell viability [157].
SIRT7 also functions as an NAD " -dependent deacetylase to participate
in multiple cellular processes, such as DNA repair, cell survival, aging
and cancer [158-161]. Numerous studies have shown that SIRT7 is
involved in lipid and energy metabolism, which illuminates its potential
connection to aging-related diseases such as T2DM, even though these
studies are contradictory and controversial [158,159,162,163]. One
research showed that SIRT7 knockout mice have a shorter lifespan,
heart hypertrophy and inflammatory cardiomyopathy [159]. In con-
trast, another research showed that SIRT7 knockout mice are resistant
to HFD-induced fatty liver, obesity and glucose intolerance [162]. Ad-
ditionally, SIRT7 knockout mice ameliorates cisplatin-induced AKI and
inflammation through reduction of nuclear translocation of NF-kB(p65)
and suppressing the expression of TNF-a [164]. However, role of SIRT7
on the pathogenesis for DKD still remains unknown (Fig. 8).

3.7.1. Role in mitochondrial biogenesis

SIRT7 plays important roles in the regulation of mitochondrial
function. SIRT7 deacetylates lysine residues located in the hetero- and
homodimerization domains of GA-binding protein f1 (GABPf1), a key
regulator of nuclear-encoded mitochondrial genes, which induces the
formation of the active GABPa/GABPJ complex and enhances the ex-
pression of mitochondrial genes. SIRT7-deficient mice show multi-
systemic mitochondrial dysfunction, such as increased blood lactate
levels, plasma triglycerides and free fatty acids, cardiac dysfunction,
and age-related hearing loss, while SIRT7 overexpression rescues these
mitochondrial functional defects [165]. Additionally, SIRT7 amelio-
rates mitochondrial protein folding stress (PFS™) by suppressing NRF1
activity and reducing the expression of the mitochondrial translation
machinery [166].
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Table 2
The direct effects of Sirtuins in T2DM and DKD.
Sirtuins Enzyme activity =~ Substrates Effect for Activators
pathophysiology
of T2DM and DKD
SIRT1 Deacetylase PGC-1a Mitochondrial CR
biogenesis? Resveratrol
Oxidative stress) BF175
Nrf2-ARE EMT} SRT1720
NF-xB (p65) Oxidative stress)
STAT3 Inflammation|
LC3,Atg5,Atg7 Apoptosis),
Mfnl, Mfn2 Autophagy/
mitophagy?
Mitochondrial
fusion?
SIRT2 Deacetylase FOXO3a Oxidative stress) -
G6PD Oxidative stress|
Mfn2,Drpl,TFAM  Mitochondrial
fission|/fusion?
NF-xB (p65) Inflammation|
PGC-1a Mitochondrial
biogenesis?
SIRT3 Deacetylase SOD2 Oxidative stress) AICAR
IDH2 Oxidative stress) Honokiol
FOXO3a,catalase = Oxidative stress)
OPA1,MFN1 Drpl  Mitochondrial
PGC-1a fission|/fusion?
Mitochondrial
biogenesis?
SIRT6 Deacetylase Nortchl/4 Inflammation|, -
autophagy?,
AMPK apoptosis|
Mitochondrial
NF-kB, c-JUN biogenesis?,
eNOS apoptosis)
Nrf2-RNAP I Inflammation)
complex Oxidative stress|
HIFla Oxidative stress|
PGC-1a,GCN5
Glycolysis|
Hepatic glucose
production|

4, Activators of Sirtuins in T2DM and DKD

Based on the role of the Sirtuins family mentioned above, especially
the role of SIRT1, 3 and SIRT6 in the pathogenesis of T2DM and DKD,
activators of sirtuins have been investigating as potential targets for
ameliorating T2DM and DKD. Some of them played positive roles in
improving mitochondrial function, inhibiting oxidative stress and in-
flammation.

Resveratrol (RSV) is the most well-known compound for stimulating
sirtuins [167]. In a clinical study, RSV increased insulin sensitivity via
Akt/protein kinase B (PKB) pathway, then reduced oxidative stress in
T2DM patients [168]. It can increase the number of mitochondria in the
muscle of KKAy mice by deacetylation of PGC-1a, protecting against
diet-induced obesity and insulin resistance [169]. It can also reduce the
oxidative damage and apoptosis of podocytes induced by high-glucose
stimulation via SIRT1/PGC-la-mediated mitochondrial protection
[170]. In liver of old mice, RSV can reduce the expression of TNF -a, II-
1B , which are increasing during aging [171]. In subsequent studies,
more efficient activators were found. SRT1720 is a small molecule ac-
tivator of SIRT1 that are structurally unrelated to, and 1000-fold more
potent than RSV. It can improve insulin sensitivity, lower plasma glu-
cose, and increase mitochondrial capacity in adipose tissue, skeletal
muscle and liver of Zucker fa/fa rats [172]. SRT1720 deacetylates PGC-
la to improve mitochondrial biogenesis and NF-kB to inhibit in-
flammatory pathway in vivo and in vitro [173]. It activates AMPK in a
SIRT1-independent manner to increases mitochondrial function in
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skeletal muscle [174] and attenuates renal fibrosis by inhibiting oxi-
dative stress [175]. BF175 is another new potent, selective agonist of
SIRT1. It can protect podocytes from high glucose-induced injury by
improving the mitochondrial function and homeostasis via PGC-1a
activation in a SIRT1-dependent manner [176] (Fig. 2, Table 2).

As an activator of AMPK, AICAR can reduce cisplatin-induced AKI
and improve renal function via the deacetylase activity of SIRT3 [94].
Honokiol is a natural biphenolic compound with anti-inflammatory,
anti-oxidative effects [177]. Previous studies demonstrated that as an
activator of SIRT3, honokiol increases SIRT3 activity to deacetylate
mitochondrial MnSOD in a dose dependent manner to reduce ROS
production in cardiomyocytes [177]. Further research showed that
honokiol increased expression of MFN1 and OPA1l to maintain the
mitochondrial fusion dynamics in cardiomyocytes [178] (Fig. 4,
Table2).

5. Conclusion

Existing studies elucidate the role of mitochondrial function in the
pathogenesis of T2DM and DKD, showing that the regulation of mi-
tochondrial oxidative stress, biogenesis, mitophagy, fusion and fission
processes and other potential mechanisms is involved. As described
above, Sirtuins have been confirmed by numerous studies to participate
in the regulation of mitochondrial quality control through multiple
mechanisms. In particular, SIRT1, 2, 3 and 6 are closely involved in the
pathogenesis for T2DM and DKD, we speculate that it may be closely
related to their deacetylation effects; therefore, they are considered to
be potential targets to relieve insulin resistance, T2DM and DKD.
However, there is little direct evidence that SIRT4, 5 and 7 is involved
in the pathogenesis for T2DM and DKD. Given its effects on metabolism,
and although there are still some contradictions on the physiological
role on metabolism and mitochondrial regulation, SIRT4, 5 and 7 is
hypothesized to play a role in the pathogenesis for T2DM and DKD.
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HMART—< Environmental monitoring and estimation of exposure doses of residents in Tomioka Town, Fukushima
Prefecture
BRI WmXiE+T O FiERL a
1. ARBEQ)
1) B #9(Goal)

Ascertain air dose rates and decontamination effect as well as analyses the radiocesium movement;
Determine the temporal evolution of the air dose rate in various land types;
Evaluate the effective dose for residents and workers

2) k8% (Approach)

We carried out a detailed and high—frequency radiation monitoring program using a car-borne survey to provide relatively high-density
data. We also evaluated the effects of decontamination efforts, such as reductions in ambient and radiocesium dose rates, in three
areas (“Decontaminated area”, “Radioactive waste storage area” and “Non-decontaminated area”) with markedly different
characteristics in the difficult—to—return zone in Tomioka Town.

3) #§1 &A% (Materials and methods)

We regularly measured the ambient dose rate from July 2018 to July 2019 (10 times in the Decontaminated area; 11 times in the
Radioactive waste storage area; nine times in the Non-decontaminated area) The difficult-to-return zone of Tomioka Town was
surveyed using a car-borne survey system, Radi-probe® (Model: HDS-101GN, Mirion Technologies, Inc, Japan). Combined with the
output photos, the three districts were precisely divided The measurement points ranged from 510 to 995, 747 to 1508 and 121 to
189 in the Radioactive waste storage area, Decontaminated area and Non—-decontaminated area, respectively Effective doses were

determined for external exposure

4) RBR#ER(Results)

The median dose rates in the “Decontaminated area” in the difficult—to-return zone decreased rapidly from 1.0 wSv/hto 0.32 u
Sv/h; however, the median dose rates in the “Non-decontaminated area” and “Radioactive waste storage area” were maintained
between 11-14 w1 Sv/h and 046-0.61 w Sv/h, respectively. The detection of cesium-137 (Cs-137) in the Decontaminated area also
decreased rapidly from 64% to 6 7%. On the other hand, the detection of Cs—-137 in the Contaminated area and Radioactive waste
storage area decreased from 97% to 88% and 53% to 16% respectively We confirmed that the dose rates in the Decontaminated area
dramatically decreased due to decontamination work aiming to help residents return home Moreover, the estimated external exposure
dose of workers during the present survey was 0.69 mSv/y in the Decontaminated area and 0.57 mSv/y in the Radioactive waste
storage area, respectively. This case of Tomioka Town within the “difficult-to-return zone” may be the first reconstruction model for
evaluating environmental contamination and radiation exposure dose rates due to artificial radionuclides derived from the nuclear
disaster. The frequency distributions of the ambient dose rates within the difficult—to-return zone of Tomioka town were illustrated in

Figure 1.
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2018 to July 2019.

5) & (Discussion)

The dose rates in the Decontaminated area decreased faster than those in the Radioactive waste storage area and Non-
decontaminated area from July 2018 to July 2019. Significant differences in ambient dose rates were observed among surveys in the
Decontaminated area, Radioactive waste storage area and Non-decontaminated area (p<0.001). Noticeable fluctuations in dose rates
in the Radioactive waste storage area and Non-decontaminated area were observed. Also, a relatively stable downward trend was
observed in the Decontaminated area.

The main reason for the decrease in dose rates over this 1-year period in Yonomori District is the decontamination efforts which
have focused on removing deposits from roofs, decks and gutters; wiping off roofs and walls; high-pressure washing of houses and
buildings; mowing lawns; removing fallen leaves and stripping topsoil in gardens; removing deposits in ditches and high—pressure
washing of roads. In the present study, the estimated annual effective dose of decontamination
workers, as well as the residents of decontaminated areas, was lower than the annual effective dose limits recommended by the
Japanese government. Nevertheless, radiation safety education for workers is needed to appropriately protect them from radiation.

-1'?0,6
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for Workers Engaged in Decontamination Works.https://www.mhlw.go.jp/english/topics/2011ea/workers/ri/gn/gn_141118_a01.pdf
(Accessed August 23, 2019).
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Abstract

The concentration levels of 36 airborne heavy metals and atmospheric radioactivity in total suspended particulate (TSP) samples
were measured to investigate the chemical characteristics, potential sources of aerosols, and health risk in Beijing, China, from
September 2016 to September 2017. The TSP concentrations varied from 6.93 to 469.18 pg/m®, with a median of 133.97 pg/m?.
The order for the mean concentrations of heavy metals, known as hazardous air pollutants (HAPs), was as follows: Mn > Pb > As
> Cr>Ni>Se>Cd> Co > Sb>Hg > Be; Non-Designated HAPs Metals: Ca>Fe>Mg>Al>K>Na>Zn>P>Ba>Ti>Cu>
Sr>B>Sn>1>V>Rb>Ce>Mo>Cs>Th>Ag>U> Pt. The median concentration of As was higher than China air quality
standard (6 ng/m?). The gross av and 3 concentration levels in aerosols were (1.84 = 1.59) mBg/m® and (1.15 +0.85) mBg/m’,
respectively. The enrichment factor values of Cu, Ba, B, Ce, T, Cs, Pb, As, Cd, Sb, Hg, Fe, Zn, Sn, I, Mo, and Ag were higher
than 10, which indicated enriched results from anthropogenic sources. Pb, As, and Cd are considered to originate from multiple
sources; fireworks released Ba during China spring festival; Fe, Ce, and Cs may come from stable emissions such as industrial
gases. The health risks from anthropogenic metals via inhalation, ingestion, and dermal pathway were estimated on the basis of
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health quotient as well as the results indicated that children faced the higher risk than adults during the research period. For adults,
the health risk posed by heavy metals in atmospheric particles was below the acceptable level.

Keywords Heavy metals, - Atmospheric radioactivity, - Enrichment factor, - Hazard quotient

Introduction

Air pollution is a global threat with negative effects on public
health and ecosystems (European Environment Agency
2018). Severe air pollution not only increases the risk of can-
cer, but also may lead to cardiovascular or chronic obstructive
pulmonary disease, allergies, and Alzheimer’s disease (WHO
2013a; Sun et al. 2014b; Morishita et al. 2015; Zhang et al.
2016; Kilian and Kitazawa 2018). Previous studies suggested
the cardiovascular effects of ambient air particulate matter
(PM) are greatly influenced by their metal contents (nickel)
(Zanobetti et al. 2009; Mostofsky et al. 2012).

Some heavy metals in atmospheric particles can severely
affect human health (WHO 2000, 2013b; U.S. EPA 2016,
2019a). For instance, arsenic (As) can increase incidence of
lung cancer (WHO 2000); lead (Pb) can adversely affect the
nervous system, kidney function, immune system, reproduc-
tive and developmental systems, and cardiovascular system
(UNEP, 2010; U.S. EPA 2007); mercury (Hg) intake in
China leads to fetus intelligence quotient decrements and fatal
heart attacks (Chen et al. 2019). Although some metallic ele-
ments, such as iron (Fe), are indispensable to the human body,
excessive amounts of these metals still present health risks
(Geiger and Cooper 2010).

Atmospheric radioactivity originated from the naturally oc-
curring radioisotopes, such as Thorium-232 (***Th) and
Uranium-238 (**®U) series and their decay products, nuclear
accident, and nuclear testing (UNSCEAR 2000; Tzortzis and
Tsertos 2004). The inhalation of radioactive atmospheric par-
ticles is one of the natural radiation sources for human beings
(UNSCEAR 2000). Therefore, gross alpha («) and beta (5)
are generally measured for screening unusual radioactivity in
the atmosphere (Dueiias et al. 1999).

Beijing, as the capital of China, has a high population den-
sity and the largest vehicle ownership rates in China (about 6
million and 80 thousand vehicles in 2018) (The People’s
Government of Beijing Municipality 2018; Beijing Traffic
Management Bureau 2019). From 2013 to 2017, the fine par-
ticle pollution decreased from 89.5 to 58 pug/m® in Beijing but
still exceeds the national standard by 66% (Fig. 1) (UN
environment 2019). Furthermore, the provinces around
Beijing, such as Tianjin and Hebei, have a relatively large
industrial emission (Li et al. 2018a; Yang et al. 2019).
Previous studies in Beijing reported high health risks and re-
lated health impact caused by heavy metals in air particulate
matter (Langrish et al. 2009; Rich et al. 2012; Du et al. 2013;
Shao et al. 2017; Li et al. 2018b; Yue et al. 2019). Therefore,
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the study of heavy metals in atmospheric particles is signifi-
cant to the haze pollution control and human health protection.

Thus, in this study, we analyzed the levels of metals and
gross radioactivity of total suspended particulate (airborne
particles with diameters less than 100 um, TSP) samples in
Beijing, China. Moreover, possible risk sources were identi-
fied and analyzed. Finally, the results of element concentra-
tions were also used to develop a quantitative estimate of the
health quotients (HQs).

Methodology
Air sampling collection and metal measurement

The measurements occurred on the rooftop of an office build-
ing (20 m above ground) at Hepingli Zhongjie, Dongcheng
District, Beijing (116.2° E, 39.6° N) (Fig. 1). The site is locat-
ed in a mixed-use neighborhood including schools, resi-
dences, and parks. The site is also in close proximity to two
major streets, i.e., the second ring road around Beijing (ap-
proximately 1 km south) and the third ring road (approximate-
ly 2 km north).

Seventy-five TSP samples were collected by a high-volume
air sampler (Senya, Sweden, Snow White, 900 m’/h) from
September 2016 to September 2017. The collecting time for
each sample was 24 h. To analyze the seasonal variation, the
average of each season (spring: n =15, 2017/3/2-2017/5/18;
summer: n = 11, 2017/6/3-2017/8/25; autumn: n =26,2016/9/
28-2016/11/29, 2017/9/3-2017/9/22; winter: n =21, 2016/12/
2-2017/2/23) was used to draw a percentage stacked column
chart (Fig. 1). The air volume that passed through the sampler
(10-um pore size) was 13709~26090 m*/day.

In this work, 36 metal elements were analyzed: manganese
(Mn), arsenic (As), cadmium (Cd), nickel (Ni), chromium
(Cr), lead (Pb), selenium (Se), antimony (Sb), mercury (Hg),
beryllium (Be), cobalt (Co), iron (Fe), calcium (Ca), magne-
sium (Mg), aluminum (Al), potassium (K), sodium (Na), zinc
(Zn), phosphorus (P), barium (Ba), titanium (Ti), copper (Cu),
strontium (Sr), boron (B), tin (Sn), iodine (I), vanadium (V),
rubidium (Rb), cerium (Ce), molybdenum (Mo), thallium (T1),
cesium (Cs), thorium (Th), argentum (Ag), uranium (U), plat-
inum (Pt). The results of heavy metals were divided to haz-
ardous air pollutant (HAP) group and non-designated HAP
group on the basis of the Initial List of Hazardous Air
Pollutants with Modifications (U.S.EPA 2010; U.S. EPA
2016). Mn, Pb, As, Cr, Ni, Se, Cd, Co, Sb, Hg, and Be and
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Fig. 1 The map of Beijing and the
surroundings with sampling point
(red triangle). L. M. C. created the
map using the software Green
Map® (Tokyo Shoseki Co., Ltd.,
Tokyo, Japan)

their compounds are included in the list. Although the other 25
metals have not been designated as hazard air pollution yet,
excessive amounts of these metals still present health risks.

The net weight of TSP was obtained by weighing the filter
membrane after sampling and subtracting the membrane
weight before sampling. The TSP concentrations were obtain-
ed by dividing the net sampling weight by the sampling flow
rates.

Air pollution data (PM2.5, PM10) were obtained from the
website of Beijing municipal ecological environmental bureau
(Beijing Municipal Ecological Environmental Bureau 2019).
The temperature and relative humidity during sampling were
derived from the website of Wunderground website
(www.wunderground.com).

A low background alpha, beta measurement apparatus is a
lower cost device that is widely used in environmental sample
monitoring. By using standard sampling methods and stan-
dard ways of processing and storing, we choose Americium-
241 (Am-241) and Potassium-40 (K-40) as standard materials
to conduct the experiment by employing qualified drugs and
reagents. To ensure the veracity of the method, all devices and
instruments that are involved are calibrated by the National
Institute of Metrology and are still in the validity period.

The elemental analysis was performed using 7700x Agilent
inductively coupled plasma mass spectrometry (ICP-MS,
American) and Mass Hunter Workstation Software (Version:
A.01.02; Agilent Technologies). Calibrants were prepared
from multi-element standard solution (Lot:
S130823001,Canada, Plasma CAL). The samples (including
blank membrane samples) were digested by adding 10 mL
concentrated nitric acid and digested according to the micro-
wave procedure. After the acid wiped out, volume was 50 mL
with pure water for determination. Quantitative analysis of the
elemental concentrations in unknown samples was measured
by an internal standard method.

Enrichment factor and health risk assessment

To determine whether the presence of a certain element was
due to natural or anthropogenic sources, the enrichment factor
(Ef) value was eliminated to indicate the source identification
of heavy metal abundances in the atmosphere. Al is used as a
reference element since it is ubiquitous in the environment and
has no significant anthropogenic sources. The Ef of heavy
metals can be calculated using the following equation
(Taylor S.R 1964; Hsu et al. 2010):

Ef = (C/Al)aerosol (1)

(C/AD gt

where (C/Al)aeros01 18 the concentration ratio of given heavy
metals C to Al in ambient samples, and (C/Al)¢ is the same
ratio of the heavy metal C to Al in the average samples. The
background concentrations of heavy metals in the background
are selected in China (Li Tong 1997).

Previous studies show that Ef values lower than 10 suggest
a greater possibility of pollution from natural crustal elements,
while values between 10 and 100 should be considered to
indicate that elements are from human activities and mixed
sources (from both natural and anthropogenic sources); high
Ef values (> 100) are considered to be the result of anthropo-
genic sources or exceptional geological events (Betha et al.
2014; Lyu et al. 2017). However, studies support different
standards with Ef values between 2 and 10 being suggestive
of moderate mixed sources (Li Tong 1997; Lin et al. 2016).

Human health can be significantly influenced by heavy
metals in the atmosphere via ingestion, dermal contact, and
inhalation (WHO 2000). The exposure parameters for expo-
sure assessment models are referenced from the U.S. EPA,
environmental site assessment guidelines, and other relative
studies (U.S. EPA 2009; Du et al. 2013; Sun et al. 2014a; Wei
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etal. 2015; Zheng et al. 2015; Zhang et al. 2016; Megido et al.
2017; Kicinska and Bozecki 2018).

The average daily dose (mg/kg day ', ADD) was estimated
for each element using the following expressions:

Cx IRy, EFxED

ADD;,, = F 2
€ BW AT ¢ 2)
C x SA x AF x ABS EF x ED
ADDyerm = W X =g X CF (3)
EF x ED
ADD;y, = IR, — ~ — XCF 4

inh Cx thBWXATnXC ()

where C (ng/m3) is the metal concentration in TSP; IR is the
ingestion rate (100 mg/day for adults and 200 mg/day for
children), and inhalation rate (20 m3/day for adults and
5 m3/day for children) (Vik et al. 1999; Du et al. 2013); BW
is the average body weight of Beijing citizen (66.1 kg for
adults and 22.7 kg for children) (He et al. 2016; Meng Jie
et al. 2017); EF is the exposure frequency (350 days/year)
(U.S. EPA 2014); ED is the exposure duration (24 years for
adults and 6 years for children) (U.S. EPA 2014); AT is the
average time (365 days x ED); CF is the conversion factor
(1x10° kg/mg) (U.S. EPA 1989); SA is the surface exposure
area of Chinese in summer (4020 ¢cm? for adults and 2160 cm?
for children) (Zong et al. 2009); AF is the adherence factor
(0.07 mg/cm?*/day for adults and 0.02 mg/cm*/day for chil-
dren) (U.S. EPA 2004); ABS is the dermal absorption factors
(0.03 (As), 0.001 (Cd), 0.01 (others)) (Hu et al. 2012; Megido
et al. 2017; U.S. EPA 2019b); AT, =ED x 365 daysx 24 h/
day.

The assessment of potential health risks uses the following
equation (U.S. EPA 2009):

3 ADD;

3
H = HQ. =
qum [;1 Ql [g] RfDI

(5)

where RfD refers to the reference dose for the pathways which
are listed in Table 1. HQ <1 indicates no adverse health ef-
fects, and HQ > 1 shows a probability of adverse health effects
(U.S. EPA 2001).

In this study, the hazard quotient was calculated only for
heavy metals with Ef values greater than 10, which are from
anthropogenic sources. Although the Fe, Mg, Ca, K, and Na
are essential human nutrients and are toxic only at very high
doses, we calculate the HQ for Fe due to the higher Ef value
(U.S. EPA 1989).

Statistical analysis

Mean, standard deviation, and minimum and maximum
values of air pollutant concentrations were calculated for de-
scriptive statistics. Spearman’s non-parametric rank order cor-
relation coefficient was used to describe the correlation among

@ Springer

TSP, temperature, humility, seasonal variations, gross « and (3,
and heavy metals. The regression lines were used to calculate
the percentage of PM;, and PM, 5 in TSP. The criterion for
statistical significance was p <0.05. Statistical analysis was
performed using a SPSS 25 (IBM Corp., Armonk, NY, USA).

Results and discussion

The concentration of heavy metals and gross
radioactivity

The TSP, gross radioactivity, and concentration of metal ele-
ments in the aerosol samples collected in Beijing from
September 2016 to September 2017 are reported in Table 2.

During the sampling period, the TSP concentrations varied
from 6.93 to 469.18 pg/m?, with a median of 133.97 pg/m>.
The PM, s and PM,;, concentrations obtained from the
website of Beijing municipal ecological environmental bureau
ranged from 6 to 430 pg/m® (6-510 g/m?), with a median of
52 pg/m’® (79 pg/m®) (Beijing Municipal Ecological
Environmental Bureau 2019). The PM, 5 and PM,, concen-
trations were compared with the TSP concentrations to deter-
mine the proportion in TSP from the regression lines. The
results show that, in this study, the PM, 5 and PM o took about
48% and 68% of TSP samples, respectively.

The average concentration of radioactivity in this research
(gross o, 1.84 mBg/m; gross /3, 1.15 mBg/m?) was still clear-
ly higher in the majority. Previous studies conducted in
Qinshan nuclear power plant, Spain, and New Mexico have
reported that the average of gross « and gross (3 ranged from
0.069 to 0.357 mBg/m’ and 0.45 to 1.0 mBg/m’, respectively
(Garcia-Talavera et al. 2001; Hernandez et al. 2005; Bin et al.
2007; Huang et al. 2009; Thakur and Mulholland 2011). It
should be noticed the average concentrations of natural radon
in modern buildings is about 50 Bg/m® which is extremely
higher than the gross v and (3 concentration in outdoor air
(Malinovsky et al. 2018). The health risks caused by the inha-
lation of radioactive particles in the air are mainly considered
indoor source rather than outdoor.

For Pb, Cd, and Hg, although the median values did not
exceed limits of China (Pb 0.5 ug/m>, Cd 5 ng/m®, Hg 50 ng/
m®) (Ministry of Environmental Protection (China) 2012), the
mean concentration of Pb exceeded the ambient air quality
standard of the USA (0.15 pg/m?) (U.S. EPA 2019).
Compared with the WHO proposed limit values (0.5 pug/m’
for Pb, 1 ug/m3 for Mn, 4-13 ng/m3 for As, 5 ng/m3 for Cd,
1 ug/m® for Hg, and 20 ng/m’ for Ni) and China air quality
standard (6 ng/m3 for As), the median concentrations of Pb,
Mn, Cd, Hg, and Ni were lower than the limit except As (Van
Leeuwen 2002; Ministry of Environmental Protection (China)
2012; WHO 2013a, 2017; Padoan et al. 2016). The average
concentrations of As and Pb were higher than other studies
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Table 1 Reference factors for

assessing hazard quotient (U.S. Element

RfDy.—dermal reference

RfD,—oral reference RfC;—inhalation reference

EPA 2009, 2011, 2019b; Du et al.

2013; Sun et al. 2014a; Weietal. ~ Pb

2015; Zheng et al. 2015; Zhang As

et al. 2016; Megido et al. 2017; cd

Liu et al. 2018; Kicinska and

Bozecki 2018) Sb
Hg
Fe
Zn 6E—02

Ba
Cu 1.2E-02

B
Sn

1
Mo

Tl
Ag

5.2E-04

1.00E-05

3.5E-03

3.00E-04 1.50E-05

1.00E-05 1.00E-03

4.00E-04 3.0E-04

1.60E-04 3.0E-04

7.00E-01

3.00E-01

2.00E-01 5.0E-04

4.00E-02

2.00E-01 2.0E-02

6.00E-01

5.04E-03

5.00E-03 4.0E-04
1.0E-04

5.00E-03

conducted in Beijing during 2016 and 2017 which was reverse
for Cr and Fe (Liu et al. 2018; Men et al. 2018; Jin et al. 2019).
Although those researches were conducted in Beijing during a
similar time period, the results showed difference which the
heavy metals were considered to regional differences of pollu-
tion sources.

Seasonal distribution pattern and source analysis

The percentage of gross « and (3, Pb, As, Se, Cd, Sb, Hg, K,
Na, Ba, Cu, Sr, B, I, Mo, and T1 in winter exceed 50% of the
whole year (Fig. 2). Gross «, gross 3, Pb, As, Cr, Se, Cd, Sb,
Hg, K, Na, Zn, Ba, Cu, Sr, B, Sn, I, Mo, Tl, Ag, and Pt are
significantly correlated with seasonal variations (p < 0.05).

There were negative associations between temperature and
concentration of heavy metals except Sn as well as between
temperature and gross radioactivity (p < 0.05). The concentra-
tions of Pb, As, Se, Cd, Sb, Hg, Zn, Sn, Mo, Tl, and Ag were
correlated with humidity (p <0.05). The statistical results of
the Spearman correlation between gross radioactivity and 36
metal elements showed positively correlations (p < 0.05).

Figure 3 shows the enrichment factor (Ef) of each element
calculated to evaluate the anthropogenic influence. On the
basis of the mean concentration of elements, the Ef values of
Cu, Ba, B, Ce, T, and Cs were between 10 and 100, which
indicated anthropogenic sources instead of crustal sources.
The Ef values of Pb, As, Cd, Sb, Hg, Fe, Zn, Sn, I, Mo, and
Ag were higher than 100, which indicated highly enriched
results from anthropogenic sources.

In China, metal elements in coal include I, Be, Cr, Co, Ni,
Cu, As, Se, Sr, Mo, Cd, Sb, Cs, Hg, Pb, Th, U, and Ba (Dai
etal. 2012; Gao et al. 2018). Some research suggested the use
of Cr, Ni, Hg, and As as markers of coal combustion in China
(Tian et al. 2010; Kittner et al. 2018), and coal combustion
emissions are considered the main source of pollution in

Beijing (Cai et al. 2017). Cd, Cu, Pb, Zn, As, and Ni were
suggested to be associated with diesel and gasoline exhaust
fumes from local traffic and other anthropogenic emissions
(Valavanidis et al. 2006; Men et al. 2018). A study suggests
that anthropogenic sources such as brake wear, tire dust, road
abrasion, and fossil fuel combustion spread Cu, Sb, Pb, and
Zn (Dehghani et al. 2017). Tl is considered a characteristic
element of heavy industries (Lin et al. 2016). Cu, Sn, and Ag
were usually used as solder alloys (Miller et al. 1994).

In winter, 21 (As, Cd, Fe, Pb, Zn, Hg, Sb, Cu, Mo, Ag, Sn, I,
Cs, Ce, Tl, B, Ba, Pt, P, and Ca) of the 36 trace metals are
predominantly of anthropogenic origin, with concentrations de-
pendent on the level of anthropogenic activities. Ba, Pt, P, and Ca
(Ef: 24.5, 10.5, 10.5, 10.9, respectively) showed anthropogenic
origin in winter only. Pt is the major constituent of automotive
catalysts (Nischkauer et al. 2017). If this is the reason for the
increase of Ef value, it should be reflected in four seasons; there-
fore, these three elements are considered to be more easily affect-
ed by air diffusion. It should be noted that the highest concentra-
tion of Ba (the Ef values are lower than 10 in other seasons) was
in February 1, 2017, which was the day of the Chinese Spring
Festival when people used fireworks containing Ba to celebrate.
The Ef values of I, Hg, Mo, Sb, and Zn are higher than 10, have
an obvious correlation with seasons, and belong to coal metal
elements (Tian et al. 2010; Dai et al. 2012; Gao et al. 2018;
Kittner et al. 2018). Therefore, according to these elements, coal
combustion emissions are considered to be the main source.

Most elements with an Ef value greater than 10 are signif-
icantly correlated with seasonal variations exempting Fe, Ce,
and Cs. This suggests these three elements may come from
stable emissions such as industrial gases. This is consistent
with the findings of Yu-Chi Lin et al., which suggested the
source of Fe in Beijing was mainly from iron and steel
manufacturing (Lin et al. 2016). Ce is widely used as an au-
tomobile exhaust purification catalyst (Jung et al. 2005). At
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Table 2 Mean, minimum, and
maximum concentrations of each
element determined in PM,,
samples in Beijing from
September 2016 to September
2017. All values, except for TSP,
and gross « and (3, are expressed
in ng/m’. TSP is expressed in g/

m®. Gross v and 3 are expressed
in mBg/m®

Median Min Max Mean SD

TSP 1.34E+02  6.93E+00  4.69E+02 1.52E+02  1.04E+02
Gross o 1.62E+00  145E-02  941E+00  1.84E+00  1.59E+00
Gross f3 9.97E-01 1.33E-02  391E+00  1.ISE+00  8.54E-01
Hazardous air pollutants (HAPs)  Mn 1.64E+02  2.51E+01 2.17E+03  2.12E+02 2.6E+02
Pb 9.79E+01  2.87E+00  3.22E+03 1.93E+02 3.9E+02

As 1.OSE+01  4.55E-01  3.88E+02  2.70E+01 5.1E+01

Cr 1.65E+01 1.94E+00  2.50E+02  2.22E+01 3.0E+01

Ni 9.12E+00  1.08E+00  1.40E+02  1.20E+01 1.7E+01

Se 5.00E+00  1.12E-01 1.71E+02  1.00E+01 2.1E+01

Cd  2.11E+00  4.73E-02  8.79E+01  4.70E+00 1.1E+01

Co  246E+00 2.72E-01  4.08E+01  3.50E+00 4.8E+00

Sb 9.95E-01  9.06E-02  9.04E+01  3.30E+00 1.1E+01

Hg  2.32E-01 7.51E-03 1.11E+01 5.00E-01 1.3E+00

Be 1.60E-01 1.95E-02  2.83E+00  2.00E-01 3.0E-01

Non-designated HAPs Metals Ca 1.22E+04  1.81E+03  1.23E+05  1.47E+04 1.5E+04
Fe 477E+03  6.25E+02  5.64E+04  6.17E+03 7.0E+03

Mg  2.66E+03  4.01E+02  2.72E+04  3.41E+03 3.4E+03

Al 2.06E+03  3.12E+02  242E+04  2.97E+03 3.2E+03

K 1.65E+03 1.25E+02  329E+04  2.77E+03 4.4E+03

Na 1.16E+03  6.19E+01  542E+04  2.52E+03 6.4E+03

Zn  3.04E+02  1.32E+01  6.80E+03  4.76E+02 8.1E+02

P 1.88E+02  2.32E+01  3.16E+03  2.53E+02 3.7E+02

Ba 1.18E+02  1.43E+01  2.23E+03  2.06E+02 3.5E+02

Ti 9.54E+01 1.34E+01 1.29E+03 1.24E+02 1.6E+02

Cu  6.79E+01  7.62E+00  1.56E+03 1.15E+02 1.9E+02

Sr 4.04E+01  4.48E+00  7.27E+02  6.47E+01 1.0E+02

B 1.17E+01  6.30E-01  7.18E+02  3.05E+01 8.4E+01

Sn 1.04E+01 1.69E+00  2.07E+02  1.68E+01 2.5E+01

I 5.72E+00  2.46E-01 1.97E+02  1.15E+01 2.4E+01

\ 9.26E+00 1.02E+00 8.44E+01 1.11E+01 1.1E+01

Rb  6.70E+00  6.68E-01  9.41E+01 9.20E+00 1.2E+01

Ce  5.57E+00  7.86E-01 1.12E+02  8.50E+00 1.3E+01

Mo  3.32E+00  2.70E-01  6.73E+01 5.20E+00 8.3E+00

Tl 1.04E+00  2.98E-02  3.88E+01  2.10E+00 4.7E+00

Cs 8.44E—01  857E-02  1.19E+01 1.20E+00 1.6E+00
Th  7.89E-01 1.04E-01 1.04E+01 1.11E+00  1.32E+00

Ag  3.44E-01 1.13E-02  7.67E+00  6.00E-01 1.0E+00

U 2.46E-01  2.73E-02  4.07E+00  3.44E-01  4.95E-01

Pt 1.85E-03  9.00E-06  9.77E-03  2.20E-03 1.9E-03

present, the largest use of non-radioactive Cs is as a specialty
high-density component in drilling mud used for petroleum
exploration (Butterman et al. 2004). The industrial enterprises
were the main reason for concentrations of Fe, Ce, and Cs in
Beijing.

The higher contents of elements in aerosols are considered to
originate from multiple sources. Firstly, in Beijing, the sources
of Cd may come from burning fossil fuels, municipal waste
material incineration, tire wear friction, and cigarette smoking

@ Springer

(Geiger and Cooper 2010; Men et al. 2018). Secondly, Pb and
As were anthropogenic in origin and changed with seasons.
Potential sources include coal, motor vehicles, and industrial
operations (Valavanidis et al. 2006; Dehghani et al. 2017).
Furthermore, the industrial As include wood preserving indus-
try paints, dyes, metals, drugs, soaps, and semi-conductors
(Geiger and Cooper 2010). Although leaded gasoline has been
banned in some megacities in China, Pei-Hsuan Yao et al. sug-
gests that local unleaded fuel combustion still was a Pb
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Fig. 2 The distribution of average concentration of gross radioactivity and metal elements in different seasons

contributor to the metropolitan air (Yao et al. 2015). Ore and
metal processing as well as piston-engine aircraft operations
using leaded aviation fuel also are considered lead sources
(U.S. EPA). The seasonal differences of Pb in this study indi-
cates that the main source of Pb in Beijing may not only come
from stable release but the atmospheric dispersion conditions
and coal combustion emissions in winter (Geiger and Cooper
2010).

Hazard quotient

Table 3 showed the hazard quotients of anthropogenic source
metals (Pb, As, Cd, Sb, Hg, Fe, Zn, Ba, Cu, B, Sn, I, Mo, Tl,
and Ag) via ingestion, dermal contact, and inhalation for chil-
dren and adults. The mean HQ of As was the highest among
both children and adults. The order of HQ in children and
adult groups is As, Pb, Ba, Fe, Sb, Cu, Hg, I, Zn, Mo, Cd,
Tl, B, Ag, and Sn and As, Ba, Pb, Sb, Fe, Cd, Tl, Cu, Mo, Hg,
I, Zn, B, Ag, and Sn.

Fig. 3 Average enrichment factor
values for HAP metals (red
points) and non-designated HAP
metals (blue points) collected in
Beijing from September 2016 to
September 2017

For adults, the average values of HQ for none of the metals
exceeded 1, indicating the health risk posed by heavy metals
in atmospheric particles was acceptable during the research
period. However, the integrated risks of these metals were
higher to children (1.98), while the risks through ingestion
were 1.48. The contribution of risks through ingestion to HQ
were 74.7% and 25.6% for children and adults, respectively.
The higher ingestion rate of children was supposed to be the
main reason and similar results were also obtained by other
scholars (Lyu et al. 2017; Men et al. 2018). The results con-
firmed that from September 2016 to September 2017, the air
pollution problems in Beijing was still serious for children.

Uncertainty and limitations

The risk estimation in this study has certain limitations and
may have a degree of uncertainty, because only one sample
site in the city center was used and all applied parameters are
assumed to be ideal. It will more reasonable if sampling sites
were separated in different functional areas such as industrial

@ Springer
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Table 3  The average hazard quotient (HQ) from heavy metals in TSP via inhalation (inh), ingestion (ing), and dermal contact (derm)
HQjnn HQijyg HQgerm HQqum
Adults Children Adults Children Adults Children Adults Children
Pb 1.6E-02 1.2E-02 8.0E-02 4.7E-01 1.5E-02 6.7E-03 1.1E-01 4.8E-01
Hazardous Air Pollutants (HAP) As  5.2E-01 3.8E-01 1.3E-01 7.6E-01 6.3E-03 2.8E-03 6.6E-01 1.1E+00
Cd 14E-06 1.0E-06 6.8E-04 4.0E-03 7.7E-03 3.4E-03 8.4E-03 7.4E-03
Sb 3.2E-03 2.3E-03 1.2E-02 6.9E-02 1.5E-02 7.2E-02
Hg 4.5E-04 3.3E-04 4.2E-03 2.5E-02 4.7E-03 2.5E-02
Non—designated HAP metals Fe 1.3E-02 74E-02 1.3E-02 74E-02
Zn  47E-04 3.4E-04 2.3E-03 1.4E-02 3.3E-04 1.5E-04 3.1E-03 1.4E-02
Ba 1.2E-01 8.7E-02 1.5E-03 8.7E-03 1.2E-01 9.6E-02
Cu 83E-04 6.1E-04 4.2E-03 2.4E-02 3.9E-04 1.7E-04 5.4E-03 2.5E-02
B 44E-04 3.2E-04 2.2E-04 1.3E-03 6.6E—04 1.6E-03
Sn 4.1E-05 2A4E-04 4.1E-05 24E-04
I 3.3E-03 1.9E-02 3.3E-03 1.9E-02
Mo 3.8E-03 2.8E-03 1.5E-03 8.9E-03 5.3E-03 1.2E-02
Tl 6.2E-03 4.5E-03 6.2E-03 4.5E-03
Ag 1.8E-04 1.0E-03 1.8E-04 1.0E-03
SUM 6.73E-01  4.90E-01 2.54E-01 [48E+ 298E-02 1.33E-02 9.56E-01 1.98E+
00 00

The italicized values means a probability of adverse health effects

zone and a residential zone. In addition, the differences (TSP
vs PM, 5) exist in particle bound elements because of the pore
size of filter (10 um) in this study. Future studies need to
consider the health risks posed by airborne heavy metals in
PM, 5. Because the measurement station is 20 m above the
ground, the risk estimates may be biased compared to the risks
of real public outdoor activities.

Despite these shortcomings, the risk model and conclu-
sions of this study provide a basis for assessing and future
monitoring of human health risk associated with metal expo-
sure in Beijing, China.

Conclusions

In this study, 36 elements were measured, including some
previously neglected elements, such as Ce, Cs, I, and Ag, to
provide more comprehensive data to examine air pollution
sources. In addition, the health risks caused by the inhalation
are mainly considered indoor source rather than outdoor.
Furthermore, on the basis of the enrichment factors, we con-
firmed that Pb, As, Cd, Sb, Hg, Fe, Zn, Cu, Ba, B, Sn, I, Mo,
Ce, Tl, Cs, and Ag were the anthropogenic heavy metal aero-
sols. The health risks posed by heavy metals in atmospheric
particles were below the acceptable level for adults as well as
the children faced higher health risk than adults. Further re-
search is needed because there is concern about health effects
due to air pollution.

@ Springer

Author contributions Conceptualization, funding acquisition, and super-
vision, Y. Z. M; formal analysis, investigation, methodology, and writing,
L. M. C.; methodology and resources, Z. N. W. and P. H.; review and
editing, Y. T.; resources, Y. Z. M., Y.L, B.B,H. Z, Y. X. K., W.J. Z., J.
Y., S.G.Z.,Q.H. M., H. F. W., and H. W.; all authors helped approve the
final manuscript with discussions.

Funding information This work was supported by the Special Fund for
Scientific Research Projects of Beijing Municipal Center for Disease
Prevention and Control/Beijing Research Center for Preventive
Medicine (no. 2016-BJYJ-18) and Japan China Sasakawa Medical
Fellowship.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Beijing Municipal Ecological Environmental Bureau (2019) Real-time
air quality (in Chinese). In: http//zx.bjmemc.com.cn/?timestamp =
1565074336255 (Accessed Auguest 24 2019)

Beijing Traffic Management Bureau (2019) Traffic management since
2000 (in Chinese). In: http//bjjtgl.gov.cn/jgj/ywsj/index.html
(Accessed Auguest 3, 2019)

Betha R, Behera SN, Balasubramanian R (2014) 2013 Southeast Asian
smoke haze: fractionation of particulate-bound elements and asso-
ciated health risk. Environ Sci Technol 48:4327—4335. https:/doi.
org/10.1021/es405533d

-225-


https://doi.org/10.1021/es405533d
https://doi.org/10.1021/es405533d

Environ Sci Pollut Res

Bin C, Qianyuan C, Xiaofei WU, Hongfeng W (2007) Activity level of
gross « and gross {3 in airborne aerosol samples around the Qinshan
NPP. Nucl Sci Tech 18:176-180

Butterman BWC, Brooks WE, Reese RG (2004) Cesium

Cai J, Wang J, Zhang Y et al (2017) Source apportionment of Pb-
containing particles in Beijing during January 2013. Environ
Pollut 226:30-40. https://doi.org/10.1016/j.envpol.2017.04.004

Chen L, Liang S, Liu M et al (2019) Trans-provincial health impacts of
atmospheric mercury emissions in China. Nat Commun 10:1-12.
https://doi.org/10.1038/541467-019-09080-6

Dai S, Ren D, Chou CL et al (2012) Geochemistry of trace elements in
Chinese coals: a review of abundances, genetic types, impacts on
human health, and industrial utilization. Int J Coal Geol 94:3-21.
https://doi.org/10.1016/j.coal.2011.02.003

Dehghani S, Moore F, Keshavarzi B, Hale BA (2017) Health risk impli-
cations of potentially toxic metals in street dust and surface soil of
Tehran, Iran. Ecotoxicol Environ Saf 136:92—103. https://doi.org/
10.1016/j.ecoenv.2016.10.037

Du Y, Gao B, Zhou H et al (2013) Health risk assessment of heavy metals
in road dusts in urban parks of Beijing, China. Procedia Environ Sci
18:299-309. https://doi.org/10.1016/j.proenv.2013.04.039

Dueiias C, Fernandez MC, Liger E, Carretero J (1999) Gross alpha, gross
beta activities and 7Be concentrations in surface air: analysis of their
variations and prediction model. Atmos Environ. https://doi.org/10.
1016/S1352-2310(99)00172-7

European Environment Agency (2018) Air quality in Europe

Gao Y, Yang C, Ma J, Yin M (2018) Characteristics of the trace elements
and arsenic, iodine and bromine species in snow in east-central
China. Atmos Environ 174:43-53. https://doi.org/10.1016/j.
atmosenv.2017.11.015

Garcia-Talavera M, Quintana B, Garcia-Diez E, Fernandez F (2001)
Studies on radioactivity in aerosols as a function of meteorological
variables in Salamanca (Spain). Atmos Environ 35:221-229. https://
doi.org/10.1016/S1352-2310(00)00234-X

Geiger A, Cooper J (2010) Overview of airborne metals regulations,
exposure limits, health effects, and contemporary research. 1-50.
https://doi.org/10.1212/01.CON.0000480843.89012.5b

He Y, Zeng Q, Zhao X (2016) Associations of body mass index and age
with blood pressure among chi- nese adults(Chinese). Chin J Public
Health 32:126-129

Hernandez F, Hernandez-Armas J, Catalan A et al (2005) Gross alpha,
gross beta activities and gamma emitting radionuclides composition
of airborne particulate samples in an oceanic island. Atmos Environ
39:4057-4066. https://doi.org/10.1016/j.atmosenv.2005.03.035

Hsu SC, Liu SC, Tsai F et al (2010) High wintertime particulate matter
pollution over an offshore island (Kinmen) off southeastern China:
an overview. J Geophys Res Atmos 115:1-17. https://doi.org/10.
1029/2009JD013641

Hu X, Zhang Y, Ding Z et al (2012) Bioaccessibility and health risk of
arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in
TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146-152.
https://doi.org/10.1016/j.atmosenv.2012.04.056

Huang YJ, Tao YL, Lin J, Shang-Guan ZH (2009) Annual cycle of gross
{3 activities in aerosol around Daya Bay area, China. Chemosphere
75:929-933. https://doi.org/10.1016/j.chemosphere.2009.01.022

Jie M, Xiaolei J, Xiaorui S, Li Y, he Hui KY (2017) Physical condition
and development trend of 3~6 year old collective children in
Beijing(Chinese). Matern Child Heal Care China 32:1-5

Jin Y, O’Connor D, Ok YS et al (2019) Assessment of sources of heavy
metals in soil and dust at children’s playgrounds in Beijing using
GIS and multivariate statistical analysis. Environ Int 124:320-328.
https://doi.org/10.1016/j.envint.2019.01.024

Jung H, Kittelson DB, Zachariah MR (2005) The influence of a cerium
additive on ultrafine diesel particle emissions and kinetics of oxida-
tion. Combust Flame 142:276-288. https://doi.org/10.1016/].
combustflame.2004.11.015

Kicinska A, Bozecki P (2018) Metals and mineral phases of dusts col-
lected in different urban parks of Krakow and their impact on the
health of city residents. Environ Geochem Health 40:473-488.
https://doi.org/10.1007/s10653-017-9934-5

Kilian J, Kitazawa M (2018) The emerging risk of exposure to air pollu-
tion on cognitive decline and Alzheimer’s disease — evidence from
epidemiological and animal studies. Biom J 41:141-162. https://doi.
org/10.1016/).bj.2018.06.001

Kittner N, Fadadu RP, Buckley HL et al (2018) Trace metal content of
coal exacerbates air-pollution-related health risks: the case of lignite
coal in Kosovo. Environ Sci Technol 52:2359-2367. https://doi.org/
10.1021/acs.est.7b04254

Langrish JP, Mills NL, Chan JKK et al (2009) Beneficial cardiovascular
effects of reducing exposure to particulate air pollution with a simple
facemask. Part Fibre Toxicol 6:1-9. https://doi.org/10.1186/1743-
8977-6-8

Li Tong NS (1997) Element abundances of the continental lithosphere in
China (in Chinese). Geol Prospect 33:31-37

LiJ, Chen L, Xiang Y, Xu M (2018a) Research on influential factors of
PM2 . 5 within the Beijing-Tianjin-Hebei Region in China. 2018:

LiM, WuY, Tian YH et al (2018b) Association between PM2.5 and daily
hospital admissions for heart failure: a time-series analysis in
Beijing. Int J Environ Res Public Health 15. https://doi.org/10.
3390/ijerph15102217

Lin Y-C, Hsu S-C, CC-K C et al (2016) Wintertime haze deterioration in
Beijing by industrial pollution deduced from trace metal fingerprints
and enhanced health risk by heavy metals. Environ Pollut 208:284—
293. https://doi.org/10.1016/j.envpol.2015.07.044

Liu Y, Li S, Sun C et al (2018) Pollution level and health risk assessment
of PM 2.5 -bound metals in baoding city before and after the heating
period. Int J Environ Res Public Health 15:1-17. https://doi.org/10.
3390/ijerph15102286

Lyu Y, Zhang K, Chai F et al (2017) Atmospheric size-resolved trace
elements in a city affected by non-ferrous metal smelting: indica-
tions of respiratory deposition and health risk. Environ Pollut 224:
559-571. https://doi.org/10.1016/j.envpol.2017.02.039

Malinovsky G, Yarmoshenko I, Vasilyev A (2018) Meta-analysis of case-
control studies on the relationship between lung cancer and indoor
radon exposure. Radiat Environ Biophys 0:0. https://doi.org/10.
1007/s00411-018-0770-5

Megido L, Suarez-Pena B, Negral L et al (2017) Suburban air quality:
human health hazard assessment of potentially toxic elements in
PM10. Chemosphere 177:284-291. https://doi.org/10.1016/j.
chemosphere.2017.03.009

Men C, Liu R, Xu F et al (2018) Pollution characteristics, risk assessment,
and source apportionment of heavy metals in road dust in Beijing,
China. Sci Total Environ 612:138—147. https://doi.org/10.1016/].
scitotenv.2017.08.123

Miller CM, Anderson IE, Smith JF (1994) A viable tin-lead solder sub-
stitute: Sn-Ag-Cu. J Electron Mater 23:595-601. https://doi.org/10.
1007/BF02653344

Ministry of Environmental Protection (China) (2012) GB 3095—2012
Ambient air quality standards(in Chinese)

Morishita M, Bard RL, Kaciroti N et al (2015) Exploration of the composition
and sources of urban fine particulate matter associated with same-day
cardiovascular health effects in Dearborn, Michigan. J Expo Sci Environ
Epidemiol 25:145-152. https://doi.org/10.1038/jes.2014.35

Mostofsky E, Schwartz J, Coull BA et al (2012) Modeling the association
between particle constituents of air pollution and health outcomes.
Am J Epidemiol 176:317-326. https://doi.org/10.1093/aje/kws018

Nischkauer W, Izmer A, Neouze M-A et al (2017) Combining dispersed
particle extraction with dried-droplet laser ablation ICP-MS for de-
termining platinum in airborne particulate matter. Appl Spectrosc
71:1613-1620. https://doi.org/10.1177/0003702817693240

Padoan E, Malandrino M, Giacomino A et al (2016) Spatial distribution
and potential sources of trace elements in PM10 monitored in urban

@ Springer

-226-


https://doi.org/10.1016/j.envpol.2017.04.004
https://doi.org/10.1038/s41467-019-09080-6
https://doi.org/10.1016/j.coal.2011.02.003
https://doi.org/10.1016/j.ecoenv.2016.10.037
https://doi.org/10.1016/j.ecoenv.2016.10.037
https://doi.org/10.1016/j.proenv.2013.04.039
https://doi.org/10.1016/S1352-2310(99)00172-7
https://doi.org/10.1016/S1352-2310(99)00172-7
https://doi.org/10.1016/j.atmosenv.2017.11.015
https://doi.org/10.1016/j.atmosenv.2017.11.015
https://doi.org/10.1016/S1352-2310(00)00234-X
https://doi.org/10.1016/S1352-2310(00)00234-X
https://doi.org/10.1212/01.CON.0000480843.89012.5b
https://doi.org/10.1016/j.atmosenv.2005.03.035
https://doi.org/10.1029/2009JD013641
https://doi.org/10.1029/2009JD013641
https://doi.org/10.1212/01.CON.0000480843.89012.5b
https://doi.org/10.1016/j.chemosphere.2009.01.022
https://doi.org/10.1016/j.envint.2019.01.024
https://doi.org/10.1016/j.combustflame.2004.11.015
https://doi.org/10.1016/j.combustflame.2004.11.015
https://doi.org/10.1007/s10653-017-9934-5
https://doi.org/10.1016/j.bj.2018.06.001
https://doi.org/10.1016/j.bj.2018.06.001
https://doi.org/10.1021/acs.est.7b04254
https://doi.org/10.1021/acs.est.7b04254
https://doi.org/10.1186/1743-8977-6-8
https://doi.org/10.1186/1743-8977-6-8
https://doi.org/10.3390/ijerph15102217
https://doi.org/10.3390/ijerph15102217
https://doi.org/10.1016/j.envpol.2015.07.044
https://doi.org/10.3390/ijerph15102286
https://doi.org/10.3390/ijerph15102286
https://doi.org/10.1016/j.envpol.2017.02.039
https://doi.org/10.1007/s00411-018-0770-5
https://doi.org/10.1007/s00411-018-0770-5
https://doi.org/10.1016/j.chemosphere.2017.03.009
https://doi.org/10.1016/j.chemosphere.2017.03.009
https://doi.org/10.1016/j.scitotenv.2017.08.123
https://doi.org/10.1016/j.scitotenv.2017.08.123
https://doi.org/10.1007/BF02653344
https://doi.org/10.1007/BF02653344
https://doi.org/10.1038/jes.2014.35
https://doi.org/10.1093/aje/kws018
https://doi.org/10.1177/0003702817693240

Environ Sci Pollut Res

and rural sites of Piedmont Region. Chemosphere 145:495-507.
https://doi.org/10.1016/j.chemosphere.2015.11.094

Rich DQ, Kipen HM, Huang W et al (2012) Association between changes in
air pollution levels during the Beijing olympics and biomarkers of in-
flammation and thrombosis in healthy young adults. JAMA - J Am Med
Assoc 307:2068-2078. https://doi.org/10.1001/jama.2012.3488

Shao L, Hu Y, Shen R et al (2017) Seasonal variation of particle-induced
oxidative potential of airborne particulate matter in Beijing. Sci Total
Environ 579:1152-1160. https:/doi.org/10.1016/j.scitotenv.2016.11.094

Sun Y, Hu X, Wu J et al (2014a) Fractionation and health risks of atmospheric
particle-bound As and heavy metals in summer and winter. Sci Total
Environ 493:487-494. https:/doi.org/10.1016/j.scitotenv.2014.06.017

Sun Z, Shao L, Mu Y, Hu Y (2014b) Oxidative capacities of size-segregated
haze particles in a residential area of Beijing. J Environ Sci (China) 26:
167-174. https://doi.org/10.1016/S1001-0742(13)60394-0

Taylor S.R. (1964) Abundance of chemical elements in the continental
crust : a new table. Geochim Cosmochim Acta 28:1273-1285

Thakur P, Mulholland GP (2011) Monitoring of gross alpha, gross beta
and actinides activities in exhaust air released from the waste isola-
tion pilot plant. Appl Radiat Isot 69:1307—1312. https://doi.org/10.
1016/j.apradiso.2011.04.012

The People’s Government of Beijing Municipality (2018) Statistical year-
book 2018 (in Chiness) (Accessed Auguest 19, 2019). In: http://
www.ebeijing.gov.cn/BeijingInfo2019/Facts/t1573002.htm

Tian HZ, Wang Y, Xue ZG et al (2010) Trend and characteristics of
atmospheric emissions of Hg, As, and Se from coal combustion in
China, 1980-2007. Atmos Chem Phys 10:11905-11919. https://doi.
org/10.5194/acp-10-11905-2010

Tzortzis M, Tsertos H (2004) Determination of thorium, uranium and potas-
sium elemental concentrations in surface soils in Cyprus. J Environ
Radioact 77:325-338. https://doi.org/10.1016/j.jenvrad.2004.03.014

U.S. EPA (1989) Risk assessment guidance for superfund volume I hu-
man health evaluation manual (Part A). Off Emerg Remedial
Response 1:1-291

U.S. EPA (2001) Risk assessment guidance for superfund (RAGS)
Volume III(Part A)

U.S. EPA (2004) Risk assessment guidance for superfund (RAGS).
Volume I. Human health evaluation manual (HHEM). Part E.

U.S. EPA (2007) Lead: human exposure and health risk assessments for
selected case studies volume 1. Human exposure and health risk
assessments. I:

U.S. EPA (2009) Risk assessment guidance for superfund volume I: hu-
man health evaluation manual (Part F)

U.S. EPA (2011) Exposure Factors Handbook

U.S. EPA (2014) Recommended default exposure factors. https://rais.
ornl.gov/documents/EFH_Table.pdf (Accessed Auguest 3, 2019)

U.S. EPA (2016) Initial list of hazardous air pollutants (Accessed Auguest
23, 2019). In: https://www.epa.gov/haps/initial-list-hazardous-air-
pollutants-modifications#mods

U.S. EPA 2019 Basic Information about lead air pollution.https://
www.epa.gov/lead-air-pollution/basic-information-about-lead-air-
pollution#health (Accessed Auguest 3, 2019). In: https:/www.epa.gov/
lead-air-pollution/basic-information-about-lead-air-pollution#health

U.S. EPA (2019a) Health effects notebook for hazardous air
pollutants(Accessed Auguest 12, 2019). In: https://www.epa.gov/
haps/health-effects-notebook-hazardous-air-pollutants

U.S. EPA (2019b) Regional screening levels (RSLs)-generic tables
(Accessed Auguest 24, 2019). In: https://www.epa.gov/risk/
regional-screening-levels-rsls-users-guide

@ Springer

U.S.EPA (2010) Health effects notebook for hazardous air pollutants. In: https://
www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
UNEP, 2010. Final review of scientific information on lead. https:/
wedocs.unep.org/bitstream/handle/20.500.11822/27635/LeadRev.
pdf?sequence=1&isAllowed=y. Accessed 1 Aug 2019.

UNEP (2019) A review of 20 years’ air pollution control in Beijing

UNSCEAR (2000) Sources and Effects of lonizing Radiation.

Valavanidis A, Fiotakis K, Vlahogianni T et al (2006) Characterization of
atmospheric particulates, particle-bound transition metals and poly-
cyclic aromatic hydrocarbons of urban air in the centre of Athens
(Greece). Chemosphere 65:760-768. https://doi.org/10.1016/j.
chemosphere.2006.03.052

Van Leeuwen FXR (2002) A European perspective on hazardous air
pollutants. Toxicology 181-182:355-359. https://doi.org/10.1016/
S0300-483X(02)00463-8

Vik EA, Breedveld G, Farestveit T, et al (1999) Guidelines for the risk
assessment of contaminated sites

Wei X, Gao B, Wang P et al (2015) Pollution characteristics and health
risk assessment of heavy metals in street dusts from different func-
tional areas in Beijing, China. Ecotoxicol Environ Saf 112:186-192.
https://doi.org/10.1016/j.ecoenv.2014.11.005

WHO (2000) Air quality guidelines for Europe.

WHO (2013a) Review of evidence on health aspects of air pollution —
REVIHAAP Project

WHO (2013b) Health effects of particulate matter: policy implications for
countries in eastern Europe, Caucasus and central Asia

WHO (2017) Evolution of WHO air quality guidelines: past, present and future

Yang H, Tao W, Liu Y et al (2019) The contribution of the Beijing, Tianjin
and Hebei region’s iron and steel industry to local air pollution in
winter. Environ Pollut 245:1095-1106. https://doi.org/10.1016/].
envpol.2018.11.088

Yao PH, Shyu GS, Chang YF et al (2015) Lead isotope characterization
of petroleum fuels in Taipei, Taiwan. Int J Environ Res Public
Health 12:4602-4616. https://doi.org/10.3390/ijerph 120504602

Yue W, Tong L, Liu X et al (2019) Short term Pm2.5 exposure caused a
robust lung inflammation, vascular remodeling, and exacerbated transi-
tion from left ventricular failure to right ventricular hypertrophy. Redox
Biol 22:101161. https:/doi.org/10.1016/j.redox.2019.101161

Zanobetti A, Franklin M, Koutrakis P, Schwartz J (2009) Fine particulate
air pollution and its components in association with cause-specific
emergency admissions. Environ Heal A Glob Access Sci Source 8.
https://doi.org/10.1186/1476-069X-8-58

Zhang L, Jin X, Johnson AC, Giesy JP (2016) Hazard posed by metals
and As in PM2.5 in air of five megacities in the Beijing-Tianjin-
Hebei region of China during APEC. Environ Sci Pollut Res Int 23:
17603-17612. https://doi.org/10.1007/s11356-016-6863-2

Zheng X, Zhao W, Yan X et al (2015) Pollution characteristics and health
risk assessment of airborne heavy metals collected from Beijing Bus
Stations. Int J Environ Res Public Health 12:9658-9671. https://doi.
org/10.3390/ijerph 120809658

Zong W, Xiao D, Ping LIU, et al (2009) Human exposure factors of
chinese people in environmental health risk assessment. Environ Sci

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

-227-


https://doi.org/10.1016/j.chemosphere.2015.11.094
https://doi.org/10.1001/jama.2012.3488
https://doi.org/10.1016/j.scitotenv.2016.11.094
https://doi.org/10.1016/j.scitotenv.2014.06.017
https://doi.org/10.1016/S1001-0742(13)60394-0
https://doi.org/10.1016/j.apradiso.2011.04.012
https://doi.org/10.1016/j.apradiso.2011.04.012
http://www.ebeijing.gov.cn/BeijingInfo2019/Facts/t1573002.htm
http://www.ebeijing.gov.cn/BeijingInfo2019/Facts/t1573002.htm
https://doi.org/10.5194/acp-10-11905-2010
https://doi.org/10.5194/acp-10-11905-2010
https://doi.org/10.1016/j.jenvrad.2004.03.014
https://rais.ornl.gov/documents/EFH_Table.pdf
https://rais.ornl.gov/documents/EFH_Table.pdf
https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications#mods
https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications#mods
https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide
https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide
https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
https://wedocs.unep.org/bitstream/handle/20.500.11822/27635/LeadRev.pdf?sequence=1&isAllowed=y
https://wedocs.unep.org/bitstream/handle/20.500.11822/27635/LeadRev.pdf?sequence=1&isAllowed=y
https://wedocs.unep.org/bitstream/handle/20.500.11822/27635/LeadRev.pdf?sequence=1&isAllowed=y
https://doi.org/10.1016/j.chemosphere.2006.03.052
https://doi.org/10.1016/j.chemosphere.2006.03.052
https://doi.org/10.1016/S0300-483X(02)00463-8
https://doi.org/10.1016/S0300-483X(02)00463-8
https://doi.org/10.1016/j.ecoenv.2014.11.005
https://doi.org/10.1016/j.envpol.2018.11.088
https://doi.org/10.1016/j.envpol.2018.11.088
https://doi.org/10.3390/ijerph120504602
https://doi.org/10.1016/j.redox.2019.101161
https://doi.org/10.1186/1476-069X-8-58
https://doi.org/10.1007/s11356-016-6863-2
https://doi.org/10.3390/ijerph120809658
https://doi.org/10.3390/ijerph120809658

TR B S B B 4R 2019 4F 8 J145 39 %5 8 ] Chin J Radiol Med Prot, August 2019, Vol. 39, No. 8

H A {5 20 — 1% i ol 2B A R PR BT 1 7K
5500 AR O H BOAR KR 7

EAH B ik
"R IR EF AR P AT T R R R B 2R s 28 A B 37 AT 10001357 K0
X FRMEGEE BT HFRAT 8528523
EJJ B I KM K 5 RIRJG  E B T BT PT 8528523
WBAZAEH : B K%, Email : myz0905@ 126.com

(FZE] 2001 4E3 A 11 B R RGA T HAAE R, 3 U 5 35— 1% i ol 2 KAk
PEW SRS TR BRIE P A S, AR SONS I A I S0 PR35 M O 5K PR IR R (BRI y R
PRSERE Al ) BB bt P AR SR A I 4 SR AT R A5 #Bfwé/?ﬁu_ﬁﬂé%m%ﬂﬁfﬂ BRI
RO, T BAE AR 5 — s R, 5 3 R E R AT T RRE T,

(XgR] feiy il BUMPET R, MR, f(a

DOL: 10. 3760/ cma.j.issn.0254-5098. 2019. 08. 011

Situation and enlightenment in an environmental radioactivity and public health perspective seven
years after Fukushima nuclear power plant accident

Cui Limeng', Noboru Takamura®, Ma Yongzhong'

! Department of Radiation Protection, Beijing Center for Disease Prevention and Control, Beijing Research
Center for Preventive Medicine, Beijing 100013, China;
University, Nagasaki 8528523, Japan

Cui Limeng is working at Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 8528523, Japan

Atomic Bomb Disease Institute, Nagasaki

Corresponding author: Ma Yongzhong, Email : myz0905@ 126.com
[ Abstract] Since the accident on March 11" 2011 at the Fukushima Daiichi Nuclear Power Station

following the Great East Japan Earthquake, huge amount of radionuclide has been released to the

surrounding environment. In this study, the environmental monitoring method, <y-ray dose rates,

radioactivity in environmental samples, food, wild animals and plants, health situation of residents were

summarized. Through summarizing the accident experience of Fukushima Daiichi Nuclear Power Station,
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this research discussed and analyzed the accident combining with the situation in China.
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Table 1 Radioactivity in environment samples from Fukushima prefecture
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