

海洋石油・天然ガスに係る日本財団－Deep Star 連携技術開発助成プログラム 「水素輸送におけるパイプライン材の材料特性評価」 完了報告書

事業 ID: 2023021277

事業名: 水素輸送におけるパイプライン材
の材料特性評価

事業者名: JFE スチール株式会社
報告日 2024 年 5 月 30 日

1. 事業概要

二酸化炭素排出量を削減するためにパイプラインによる水素ガス輸送が想定されるが、高圧条件下での使用には適切な材料性能を特定することが重要である。このプロジェクトは、開発した材料を用いて、高圧水素下での材料特性を評価する技術を開発すると共に、自社開発したパイプライン用材料の安全性について業界基準を踏まえ評価することを目的とする。

2. 背景

パイプラインによる水素輸送において、輸送効率とプロジェクト経済性のためには高圧輸送が必要であるが、高圧条件下で使用可能な材料性能要件を明確にすることが重要である。現在の水素パイプライン規格 ASME B31.12-2019 「Hydrogen Piping and Pipeline」 では、高圧条件である設計係数が 40%を超える場合には、水素ガス中の破壊に対する十分な耐性(破壊靭性)を備えたパイプライン材料を使用することが求められている。また、ASME B31.12-2019 規格では、ASTM E1681 規格による KIH 判定に基づく破壊安全性評価を必要としている。しかし、ASTM E1681 規格の破壊靭性試験は平面ひずみ条件が必要となるが、パイプライン材料のような延性材料では、この条件を達成するのは困難であり、材料の破壊靭性を評価する試験方法を確立する必要がある。

3. 研究目的

パイプライン材料のような延性材料に対応した水素中での破壊靭性評価法の提案と高圧水素条件下で使用可能な材料性能要件を明らかにし、自社材の耐水素適合性を評価する

4. 事業成果

高圧水素パイプラインの必要靭性に関する技術レポート

タイトル: Fracture toughness evaluation of X65 linepipe steel under high pressure hydrogen

Fracture toughness evaluation of X65 linepipe steel under high pressure hydrogen

Takahiro Sakimoto

Steel Research Laboratory, JFE Steel Corporation, Chiba, Chiba, Japan

ABSTRACT

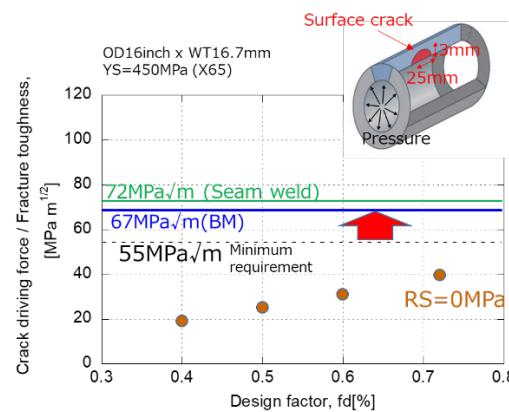
Hydrogen gas transmission will employ to reduce carbon footprint and meet climate change goals. Pipeline system is necessary for transporting gaseous hydrogen. The high pressure transmission of large volumes of hydrogen gas can increase for the transport efficiency in the future. It is important to identify the correct materials performance requirements under high pressure condition. Current hydrogen pipeline code ASME B31.12 "Hydrogen Piping and Pipeline" requires that pipe materials shall be qualified for adequate resistance to fracture in hydrogen gas. According to the standard, fracture toughness test to measure K_{IH} under hydrogen environment needs to be conducted based on ASTM E1681. While the fracture toughness test of ASTM E1681 is required for the basic plain strain condition, it is hard to achieve the condition for a high toughness material such as API X65 linepipe. So, it is need to define testing methodologies for the high toughness material. This study aims to establish evaluation methods of fracture toughness under high-pressure hydrogen condition and to evaluate fracture toughness of materials for high-pressure hydrogen pipeline. Fracture toughness tests based on ASTM E1820 with unloading compliance mend were conducted under air and high pressure condition, and the difference of fracture behavior between air and high pressure hydrogen condition was investigated from the view point of the early stage of a crack initiation. The critical crack size was analyzed using the failure assessment diagram (FAD) concept which is also specified in Article KD-10. FAD analysis for longitudinal semi-elliptical surface crack revealed that the X65 HFW linepipe exhibit enough safety margin for the weld fracture.

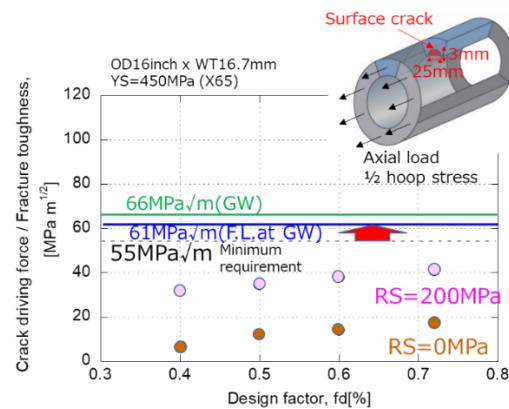
Tables & Figures

Table 1 Tensile properties of tested materials in T-direction

Grade	Type	YS[MPa]	TS[MPa]
API X65	BM	501	614
API X65	GW	613	679

Table 2 Critical fracture toughness in hydrogen condition


	BM				Seam			
	J_{IC}	$K(J_{IC})$	$J_{CO.2}$	$K(J_{CO.2})$	J_{IC}	$K(J_{IC})$	$J_{CO.2}$	$K(J_{CO.2})$
1	20	67	60	117	23	72	60	117
2	21	69	64	120	23	72	57	114
3	21	69	68	124	26	77	58	115
MOTE	21	68	64	120	24	74	58	115


	GW				F.L. at GW			
	J_{IC}	$K(J_{IC})$	$J_{CO.2}$	$K(J_{CO.2})$	J_{IC}	$K(J_{IC})$	$J_{CO.2}$	$K(J_{CO.2})$
1	20	67	55	112	16	60	55	112
2	16	60	52	108	16	60	55	112
3	21	69	56	113	17	62	57	114
MOTE	19	65	54	111	16	61	56	112

NOTE: Minimum of three equivalent value

$$K_F = \sqrt{\frac{EJ_F}{(1-v^2)}}$$

(a) Assessment of axial crack at BM and Seam weld

(b) Assessment of circumferential crack at Girth weld

Figure 1 Fracture assessment for a pipe with an assumed surface crack